A329299 Numbers whose digits are in nondecreasing order in bases 9 and 10.
0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 22, 23, 24, 25, 26, 33, 34, 35, 44, 111, 112, 113, 114, 115, 116, 122, 123, 124, 125, 133, 134, 188, 222, 223, 224, 233, 277, 278, 366, 367, 368, 377, 455, 456, 457, 458, 466, 467, 556, 557, 566, 1113
Offset: 1
Examples
Sequence includes, respectively, 9, 16, 32, and 11 terms that are 1-, 2-, 3-, and 4- digit terms in both bases, and the following: a(69) = 14777 = 22238_9 a(70) = 15677 = 23448_9 a(71) = 22234 = 33444_9 a(72) = 22235 = 33445_9 a(73) = 22236 = 33446_9 a(74) = 22237 = 33447_9 a(75) = 22238 = 33448_9 a(76) = 22244 = 33455_9 a(77) = 22245 = 33456_9 a(78) = 22246 = 33457_9 a(79) = 22247 = 33458_9 a(80) = 22255 = 33467_9 a(81) = 22256 = 33468_9 a(82) = 22335 = 33566_9 a(83) = 22336 = 33567_9 a(84) = 22337 = 33568_9 a(85) = 22345 = 33577_9 a(86) = 22346 = 33578_9 a(87) = 22355 = 33588_9 a(88) = 44468 = 66888_9 a(89) = 222344 = 367888_9 a(90) = 1233467 = 2278888_9 a(91) = 12555566 = 25555888_9
Crossrefs
Programs
-
Maple
filter:= proc(n) local L; L:= convert(n,base,10); `and`(seq(L[i+1]<=L[i],i=1..nops(L)-1)) end proc: ND[1]:= [$1..8]: R:= $0..8: for d from 2 to 10 do ND[d]:= map(t -> seq(9*t+r, r=(t mod 9) ..8), ND[d-1]); R:= R, op(select(filter, ND[d])); od: R; # Robert Israel, Nov 20 2019
-
Mathematica
Select[Range[0,1200],Min[Differences[IntegerDigits[#]]]>-1&& Min[ Differences[ IntegerDigits[ #,9]]]>-1&] (* Harvey P. Dale, Oct 14 2022 *)
Comments