cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 69 results. Next

A329299 Numbers whose digits are in nondecreasing order in bases 9 and 10.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 22, 23, 24, 25, 26, 33, 34, 35, 44, 111, 112, 113, 114, 115, 116, 122, 123, 124, 125, 133, 134, 188, 222, 223, 224, 233, 277, 278, 366, 367, 368, 377, 455, 456, 457, 458, 466, 467, 556, 557, 566, 1113
Offset: 1

Views

Author

Jon E. Schoenfield, Nov 17 2019

Keywords

Comments

a(91) = 12555566 is the largest term < 10^10000 (which is a 10480-digit number in base 9). But can it be proved that 12555566 is the final term of the sequence?

Examples

			Sequence includes, respectively, 9, 16, 32, and 11 terms that are 1-, 2-, 3-, and 4- digit terms in both bases, and the following:
  a(69) =    14777 =    22238_9
  a(70) =    15677 =    23448_9
  a(71) =    22234 =    33444_9
  a(72) =    22235 =    33445_9
  a(73) =    22236 =    33446_9
  a(74) =    22237 =    33447_9
  a(75) =    22238 =    33448_9
  a(76) =    22244 =    33455_9
  a(77) =    22245 =    33456_9
  a(78) =    22246 =    33457_9
  a(79) =    22247 =    33458_9
  a(80) =    22255 =    33467_9
  a(81) =    22256 =    33468_9
  a(82) =    22335 =    33566_9
  a(83) =    22336 =    33567_9
  a(84) =    22337 =    33568_9
  a(85) =    22345 =    33577_9
  a(86) =    22346 =    33578_9
  a(87) =    22355 =    33588_9
  a(88) =    44468 =    66888_9
  a(89) =   222344 =   367888_9
  a(90) =  1233467 =  2278888_9
  a(91) = 12555566 = 25555888_9
		

Crossrefs

Intersection of A023751 (base 9) and A009994 (base 10). Numbers whose digits are in nondecreasing order in bases b and b+1: A329294 (b=4), A329295 (b=5), A329296 (b=6), A329297 (b=7), A329299 (b=8), this sequence (b=9). See A329300 for the (apparently) largest term of each of these sequences.

Programs

  • Maple
    filter:= proc(n) local L;
      L:= convert(n,base,10);
      `and`(seq(L[i+1]<=L[i],i=1..nops(L)-1))
    end proc:
    ND[1]:= [$1..8]: R:= $0..8:
    for d from 2 to 10 do
      ND[d]:= map(t -> seq(9*t+r, r=(t mod 9) ..8), ND[d-1]);
      R:= R, op(select(filter, ND[d]));
    od:
    R; # Robert Israel, Nov 20 2019
  • Mathematica
    Select[Range[0,1200],Min[Differences[IntegerDigits[#]]]>-1&& Min[ Differences[ IntegerDigits[ #,9]]]>-1&] (* Harvey P. Dale, Oct 14 2022 *)

A028820 Squares with digits in nondecreasing order.

Original entry on oeis.org

0, 1, 4, 9, 16, 25, 36, 49, 144, 169, 225, 256, 289, 1156, 1225, 1369, 1444, 4489, 6889, 11236, 11449, 13456, 13689, 27889, 33489, 111556, 112225, 113569, 134689, 146689, 344569, 444889, 2666689, 2778889, 11115556, 11122225, 11135569
Offset: 1

Views

Author

Keywords

Comments

Number of terms less than 10^k, beginning with k=0: 1, 4, 8, 13, 19, 25, 32, 34, 42, 43, 50, 53, 61, 62, 71, 72, 82, 83, 94, 95, …, .
Like all squares the ending digits can be 0, 1, 4, 5, 6 or 9. Here is the tally of the list of terms < 10^19: {0, 1}, {1, 1}, {4, 4}, {5, 10}, {6, 13}, {9, 66}. Robert G. Wilson v, Jan 01 2014

Crossrefs

Intersection of A000290 and A009994.

Programs

  • Mathematica
    Select[Range[0,4000]^2,Min[Differences[IntegerDigits[#]]]>-1&] (* Harvey P. Dale, Dec 31 2013 *)
    Select[Range[0,10^4]^2,LessEqual@@IntegerDigits[#]&] (* Ray Chandler, Jan 06 2014 *)
  • PARI
    mono(n)=n=eval(Vec(Str(n)));for(i=2,#n,if(n[i]Charles R Greathouse IV, Aug 22 2011
    
  • Python
    from itertools import combinations_with_replacement
    from gmpy2 import is_square
    A028820_list = [0] + [n for n in (int(''.join(i)) for l in range(1,11) for i in combinations_with_replacement('123456789',l)) if is_square(n)] # Chai Wah Wu, Dec 07 2015

Formula

a(n) = A028819(n)^2. - Ray Chandler, Jan 06 2014

Extensions

Definition edited by Zak Seidov, Dec 31 2013

A193581 Sort-and-subtract: a(n) = n - A004185(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 9, 0, 0, 0, 0, 0, 0, 0, 0, 27, 18, 9, 0, 0, 0, 0, 0, 0, 0, 36, 27, 18, 9, 0, 0, 0, 0, 0, 0, 45, 36, 27, 18, 9, 0, 0, 0, 0, 0, 54, 45, 36, 27, 18, 9, 0, 0, 0, 0, 63, 54, 45, 36, 27, 18, 9, 0, 0
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 10 2011

Keywords

Crossrefs

Programs

  • Haskell
    a193581 n = n - a004185 n
    a193581_list = map a193581 [0..]
  • Mathematica
    ss[n_]:=n-FromDigits[Sort[Select[IntegerDigits[n],#>0&]]]; Array[ss,80,0] (* Harvey P. Dale, Aug 13 2013 *)

Formula

a(A009994(n)) = 0.
For n > 10, a(A009995(n)) > 0.

A254143 Products of any two not necessarily distinct terms of A237424.

Original entry on oeis.org

1, 4, 7, 16, 28, 34, 37, 49, 67, 136, 148, 238, 259, 268, 334, 337, 367, 469, 667, 1156, 1258, 1336, 1348, 1369, 1468, 2278, 2338, 2359, 2479, 2569, 2668, 3334, 3337, 3367, 3667, 4489, 4669, 6667, 11356, 11458, 12358, 12469, 12478, 13336, 13348, 13468, 13579
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 28 2015

Keywords

Comments

Digits are in nondecreasing order for all terms in decimal representation;
a(396) = 1123456789 = 3367 * 333667 is the smallest term containing all nonzero decimal digits: A254323(396) = 123456789;
A254323(n) = A137564(a(n)).

Examples

			Initial terms of A237424: 1, 4, 7, 34, 37, 67, 334, 337, 367, 667, 3334 ...
.  n | a(n) = A237424(i) * A237424(j)
. ---+-------------------------------
.  1 |    1 = 1 * 1   = A237424(1)^2
.  2 |    4 = 1 * 4   = A237424(1) * A237424(2)
.  3 |    7 = 1 * 7   = A237424(1) * A237424(3)
.  4 |   16 = 4 * 4   = A237424(2)^2
.  5 |   28 = 4 * 7   = A237424(2) * A237424(3)
.  6 |   34 = 1 * 34  = A237424(1) * A237424(4)
.  7 |   37 = 4 * 37  = A237424(1) * A237424(5)
.  8 |   49 = 7 * 7   = A237424(3)^2
.  9 |   67 = 1 * 67  = A237424(1) * A237424(6)
. 10 |  136 = 4 * 34  = A237424(2) * A237424(4)
. 11 |  148 = 4 * 37  = A237424(2) * A237424(5)
. 12 |  238 = 7 * 34  = A237424(3) * A237424(4)
. 13 |  259 = 7 * 37  = A237424(3) * A237424(5)
. 14 |  268 = 4 * 67  = A237424(2) * A237424(6)
. 15 |  334 = 1 * 334 = A237424(1) * A237424(7)
. 16 |  337 = 1 * 337 = A237424(1) * A237424(8)
. 17 |  367 = 1 * 367 = A237424(1) * A237424(9)
. 18 |  469 = 7 * 67  = A237424(3) * A237424(6)
. 19 |  667 = 1 * 34  = A237424(1) * A237424(10)
. 20 | 1156 = 34 * 34 = A237424(4)^2
see link for more.
		

Crossrefs

Subsequence of A009994.
Cf. A237424, A254323, A137564, A254338 (initial digits), A254339 (final digits).

Programs

  • Haskell
    import Data.Set (empty, fromList, deleteFindMin, union)
    import qualified Data.Set as Set (null)
    a254143 n = a254143_list !! (n-1)
    a254143_list = f a237424_list [] empty where
       f xs'@(x:xs) zs s
         | Set.null s || x < y = f xs zs' (union s $ fromList $ map (* x) zs')
         | otherwise           = y : f xs' zs s'
         where zs' = x : zs
               (y, s') = deleteFindMin s
    
  • PARI
    listA237424(lim)=my(v=List(),a,t); while(1, for(b=0,a, t=(10^a+10^b+1)/3; if(t>lim, return(Set(v))); listput(v, t)); a++)
    list(lim)=my(v=List(),u=listA237424(lim),t); for(i=1,#u, for(j=1,i, t=u[i]*u[j]; if(t>lim,break); listput(v,t))); Set(v) \\ Charles R Greathouse IV, May 13 2015

A072544 Numbers whose smallest decimal digit is also the initial digit.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 33, 34, 35, 36, 37, 38, 39, 44, 45, 46, 47, 48, 49, 55, 56, 57, 58, 59, 66, 67, 68, 69, 77, 78, 79, 88, 89, 99, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123, 124
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 04 2002

Keywords

Comments

A054054(a(n)) = A000030(a(n));
the sequence differs from A009994, A032857 and A032898: a(65)=121 is not in A009994, a(58)=113 is not in A032857 and a(56)=111 is not in A032898.

Crossrefs

Programs

  • Haskell
    a072544 n = a072544_list !! (n-1)
    a072544_list = [x | x <- [0..], a054054 x == a000030 x]
    -- Reinhard Zumkeller, Apr 25 2012
  • Mathematica
    sddiQ[n_]:=Module[{idn=IntegerDigits[n]},First[idn]==Min[idn]]; Select[ Range[ 0,130],sddiQ] (* Harvey P. Dale, Oct 30 2011 *)

A085932 Numbers k such that (digits of k sorted in ascending order) + (digital sum of k) is a palindrome.

Original entry on oeis.org

1, 2, 3, 4, 10, 20, 30, 40, 100, 124, 129, 142, 148, 167, 176, 184, 192, 200, 214, 219, 224, 229, 241, 242, 248, 267, 276, 284, 291, 292, 300, 348, 367, 376, 384, 400, 412, 418, 421, 422, 428, 438, 448, 467, 476, 481, 482, 483, 484, 567, 576, 617, 627, 637
Offset: 1

Views

Author

Jason Earls and Amarnath Murthy, Jul 14 2003

Keywords

Comments

Essentially all terms can be generated by going over A009994. By permuting digits and including any number of 0's in any term that is in A009994 any term in this sequence can be found. For example, from 124 we find that 412, 1402, 200004001 are terms. - David A. Corneth, Apr 20 2024

Examples

			142 is a term because the digits of 142 in ascending order are 124, the digital sum of 124 is 7, and 124 + 7 = 131, a palindrome.
		

Crossrefs

Programs

  • Mathematica
    dspQ[n_]:=Module[{sidn=Sort[IntegerDigits[n]],pidn},pidn= IntegerDigits[ FromDigits[ sidn]+ Total[ sidn]]; pidn==Reverse[pidn]]; Select[Range[ 700], dspQ] (* Harvey P. Dale, Jul 19 2011 *)

A277061 Numbers with multiplicative digital root > 0.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 51, 53, 57, 61, 62, 63, 64, 66, 67, 68, 71, 72, 73, 74, 75, 76, 77, 79, 81, 82, 83, 84, 86, 88, 89, 91, 92, 93, 94, 97, 98, 99, 111, 112, 113, 114, 115
Offset: 1

Views

Author

J. Lowell, Sep 26 2016

Keywords

Comments

Question: when will numbers not in this sequence outnumber numbers in this sequence? Up to n = 1249, there are 524 terms, so 525 terms not in this sequence. Up to n = 1522, there are n/2 terms. No n > 1522 has that property. Up to 10^10, only about 1.46% of numbers are a term.
To find how many terms there are up to 10^n, see if A009994(i) is for 2 <= i <= binomial(n + 9, 9). If it is then that adds A047726(A009994(i)) to the total (we don't have to worry about digits 0 in A009994(i) as there aren't any for the specified i). One may put further constraints on i. For example, A009994(i) can't contain an even digit and a 5 in the same number. - David A. Corneth, Sep 27 2016

Examples

			25 is not in this sequence because 2*5 = 10 and 1*0 = 0.
		

Crossrefs

Cf. A031347, A034048 (complement).
Cf. A028843 (a subsequence).
Union of A002275, A034049, A034050, A034051, A034052, A034053, A034054, A034055, A034056 (numbers having multiplicative digital roots 1-9).
Cf. A052382 (a supersequence).

Programs

  • Mathematica
    Select[Range@ 112, FixedPoint[Times @@ IntegerDigits@ # &, #] > 0 &] (* Michael De Vlieger, Sep 26 2016 *)
  • PARI
    is(n) = n=digits(n); while(#n>1,n=digits(prod(i=1,#n,n[i]))); #n>0 \\ David A. Corneth, Sep 27 2016

Extensions

More terms from Michael De Vlieger, Sep 26 2016

A355062 Perfect powers whose digits are in nondecreasing order.

Original entry on oeis.org

4, 8, 9, 16, 25, 27, 36, 49, 125, 128, 144, 169, 225, 256, 289, 1156, 1225, 1369, 1444, 4489, 6889, 11236, 11449, 13456, 13689, 27889, 33489, 111556, 112225, 113569, 134689, 146689, 344569, 444889, 2666689, 2778889, 11115556, 11122225, 11135569, 11336689
Offset: 1

Views

Author

Jon E. Schoenfield, Jun 16 2022

Keywords

Comments

I.e., numbers of the form b^k with b > 1 and k > 1 in whose base-10 expansion no digit is less than the previous digit.
Includes infinite subsequences such as {16, 1156, 111556, 11115556, ...} and {25, 1225, 112225, 11122225, ...}, so the sequence is infinite.

Crossrefs

Programs

  • Mathematica
    perfectPowerQ[n_] := GCD @@ FactorInteger[n][[All, 2]] > 1; (* A001597 *) Select[Range[10^6], perfectPowerQ[#] && Min[Differences[IntegerDigits[#]]]>-1 &] (* Stefano Spezia, Jul 01 2025 *)
  • PARI
    isok(m) = if (ispower(m), my(d=digits(m)); (d == vecsort(d))); \\ Michel Marcus, Jun 18 2022
  • Python
    from sympy import perfect_power as pp
    from itertools import count, islice, combinations_with_replacement as mc
    def agen():
        for d in count(1):
            ni = (int("".join(m)) for m in mc("123456789", d))
            yield from filter(pp, ni)
    print(list(islice(agen(), 40))) # Michael S. Branicky, Jun 16 2022
    

A355222 The k-th leftmost digit of a(n) is the greatest of the k leftmost digits of n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 22, 22, 23, 24, 25, 26, 27, 28, 29, 33, 33, 33, 33, 34, 35, 36, 37, 38, 39, 44, 44, 44, 44, 44, 45, 46, 47, 48, 49, 55, 55, 55, 55, 55, 55, 56, 57, 58, 59, 66, 66, 66, 66, 66, 66, 66, 67
Offset: 0

Views

Author

Rémy Sigrist, Jun 24 2022

Keywords

Comments

Leading zeros are ignored.

Examples

			For n = 1402: max({1}) = 1, max({1, 4}) = 4, max({1, 4, 0}) = 4, max({1, 4, 0, 2}) = 4, so a(1402) = 1444.
		

Crossrefs

See A355221, A355223 and A355224 for similar sequences.
Cf. A003817 (binary analog), A009994 (fixed points).

Programs

  • PARI
    a(n, base=10) = { my (d=digits(n, base), m=-oo); for (k=1, #d, d[k]=m=max(m, d[k])); fromdigits(d, base) }
    
  • Python
    def a(n):
        s, m = str(n), "0"
        return int("".join((m:=max(m, s[k])) for k in range(len(s))))
    print([a(n) for n in range(68)]) # Michael S. Branicky, Jun 24 2022
    
  • Python
    from itertools import accumulate
    def A355222(n): return int(''.join(accumulate(str(n),func=max))) # Chai Wah Wu, Jun 25 2022

Formula

a(n) >= n with equality iff n belongs to A009994.
a(a(n)) = a(n).

A355223 The k-th rightmost digit of a(n) is the least of the k rightmost digits of n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 11, 12, 13, 14, 15, 16, 17, 18, 19, 0, 11, 22, 23, 24, 25, 26, 27, 28, 29, 0, 11, 22, 33, 34, 35, 36, 37, 38, 39, 0, 11, 22, 33, 44, 45, 46, 47, 48, 49, 0, 11, 22, 33, 44, 55, 56, 57, 58, 59, 0, 11, 22, 33, 44, 55, 66, 67, 68
Offset: 0

Views

Author

Rémy Sigrist, Jun 24 2022

Keywords

Comments

Leading zeros are ignored.

Examples

			For n = 1402:
- min({1, 4, 0, 2}) = 0,
- min({4, 0, 2}) = 0,
- min({0, 2}) = 0,
- min({2}) = 2,
- so a(1402) = 2.
		

Crossrefs

See A355221, A355222 and A355224 for similar sequences.
Cf. A008592, A009994 (fixed points), A135481 (binary analog).

Programs

  • PARI
    a(n, base=10) = { my (d=digits(n, base), m=oo); forstep (k=#d, 1, -1, d[k]=m=min(m, d[k])); fromdigits(d, base) }
    
  • Python
    def a(n):
        s, m = str(n), "9"
        return int("".join((m:=min(m, s[-1-k])) for k in range(len(s)))[::-1])
    print([a(n) for n in range(69)]) # Michael S. Branicky, Jun 24 2022
    
  • Python
    from itertools import accumulate
    def A355223(n): return int(''.join(accumulate(str(n)[::-1],func=min))[::-1]) # Chai Wah Wu, Jun 25 2022

Formula

a(n) <= n with equality iff n belongs to A009994.
a(a(n)) = a(n).
a(n) = 0 iff n is a multiple of 10.
Previous Showing 11-20 of 69 results. Next