cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A141430 a(n) = A000111(n) mod 9.

Original entry on oeis.org

1, 1, 1, 2, 5, 7, 7, 2, 8, 7, 4, 2, 2, 7, 1, 2, 5, 7, 7, 2, 8, 7, 4, 2, 2, 7, 1, 2, 5, 7, 7, 2, 8, 7, 4, 2, 2, 7, 1, 2, 5, 7, 7, 2, 8, 7, 4, 2, 2, 7
Offset: 0

Views

Author

Paul Curtz, Aug 06 2008

Keywords

Comments

After the initial 1,1, the sequence is periodic with period 12.
This sequence's periodic part is a shuffled version of the two period-6 sequences A070366 and A010697. The sequence contains only the digits 1, 2, 4, 5, 7 and 8 (those of A141425).

Crossrefs

Programs

  • Python
    def A141430(n): return (2, 7, 1, 2, 5, 7, 7, 2, 8, 7, 4, 2)[n%12] if n>1 else 1 # Chai Wah Wu, Apr 17 2023

Formula

a(n) = A000111(n) mod 9 = A004099(n) mod 9.
a(n+12) = a(n), n > 1.
a(n) + a(n+6) = 9, n > 1.
a(n+11-p) - a(n+p) = 6 (p=0 or 5), 0 (p=1 or 4), -3 (p=2 or 3), any n > 1.
G.f.: (6x^8-5x^7+x^6+2x^5+3x^4+x^3+1) / ((1-x)(x^2+1)(x^4-x^2+1)). - R. J. Mathar, Dec 05 2008
a(n) = 9/2 +(-1)^floor(n/2)*A010686(n)/2 - 3*A014021(n), n > 1. - R. J. Mathar, Dec 05 2008
a(n) = 9/2 - (3/2)*cos(Pi*n/6) + (1/2)*3^(1/2)*sin(Pi*n/6) - (1/2)*cos(Pi*n/2) - (5/2)*sin(Pi*n/2) - (3/2)*cos(5*Pi*n/6) - (1/2)*3^(1/2)*sin(5*Pi*n/6). - Richard Choulet, Dec 12 2008

Extensions

Edited by R. J. Mathar, Dec 05 2008

A057566 Number of collinear triples in a 3 X n rectangular grid.

Original entry on oeis.org

0, 1, 2, 8, 20, 43, 78, 130, 200, 293, 410, 556, 732, 943, 1190, 1478, 1808, 2185, 2610, 3088, 3620, 4211, 4862, 5578, 6360, 7213, 8138, 9140, 10220, 11383, 12630, 13966, 15392, 16913, 18530, 20248, 22068, 23995, 26030, 28178, 30440, 32821, 35322
Offset: 0

Views

Author

John W. Layman, Oct 04 2000

Keywords

Crossrefs

Second differences give A047264. Third differences are periodic {5, 1, 5, 1, ...} and form A010686. See A000938 for the n X n grid.

Programs

  • Mathematica
    LinearRecurrence[{3, -2, -2, 3, -1}, {0, 1, 2, 8, 20}, 50] (* Paolo Xausa, Feb 22 2024 *)

Formula

Conjecture: a(n) = 5*floor((2n^3 - 3n^2 - n)/24) + floor((2(n-1)^3 - 3(n-1)^2 - (n-1))/24) + n, which fits all of the listed terms.
From R. J. Mathar, May 23 2010: (Start)
a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5) = n^3/2 - n^2 + n + (1-(-1)^n)/4.
G.f.: x*(1 - x + 4*x^2 + 2*x^3)/((1+x)*(x-1)^4). (End)

A171654 Period 10: repeat 0, 1, 6, 7, 2, 3, 8, 9, 4, 5.

Original entry on oeis.org

0, 1, 6, 7, 2, 3, 8, 9, 4, 5, 0, 1, 6, 7, 2, 3, 8, 9, 4, 5, 0, 1, 6, 7, 2, 3, 8, 9, 4, 5, 0, 1, 6, 7, 2, 3, 8, 9, 4, 5, 0, 1, 6, 7, 2, 3, 8, 9, 4, 5, 0, 1, 6, 7, 2, 3, 8, 9, 4, 5, 0, 1, 6, 7, 2, 3, 8, 9, 4, 5, 0, 1, 6, 7, 2, 3, 8, 9, 4, 5, 0, 1, 6, 7, 2, 3, 8, 9, 4, 5
Offset: 0

Views

Author

Paul Curtz, Dec 14 2009

Keywords

Comments

The repeating part contains all ten digits.

Formula

a(n) = A171507(n+1) mod 10.
a(2n) = A059629(n) mod 10; a(2n+1) = A139788(n).
abs(a(n+1)-a(n)) = A010686(n).
G.f.: -x*(1 + 6*x + 7*x^2 + 2*x^3 + 3*x^4 + 8*x^5 + 9*x^6 + 4*x^7 + 5*x^8) / ( (x-1)*(1+x)*(x^4 + x^3 + x^2 + x + 1)*(x^4 - x^3 + x^2 - x + 1) ). - R. J. Mathar, Jul 13 2011

Extensions

More terms from Jinyuan Wang, Feb 26 2020

A173078 a(n) = (5*2^n - 2*(-1)^n - 9)/3.

Original entry on oeis.org

1, 3, 11, 23, 51, 103, 211, 423, 851, 1703, 3411, 6823, 13651, 27303, 54611, 109223, 218451, 436903, 873811, 1747623, 3495251, 6990503, 13981011, 27962023, 55924051, 111848103, 223696211, 447392423, 894784851, 1789569703, 3579139411
Offset: 1

Views

Author

Paul Curtz, Feb 09 2010

Keywords

Comments

The sequence and higher-order differences in subsequent rows are
1, 3, 11, 23, 51, 103, 211, 423, 851, 1703, 3411, 6823, 13651
2, 8, 12, 28, 52, 108, 212, 428, 852, 1708, 3412, 6828, 13652
6, 4, 16, 24, 56, 104, 216, 424, 856, 1704, 3416, 6824, 13656
-2, 12, 8, 32, 48, 112, 208, 432, 848, 1712, 3408, 6832, 13648
14, -4, 24, 16, 64, 96, 224, 416, 864, 1696, 3424, 6816, 13664
-18, 28, -8, 48, 32, 128, 192, 448, 832, 1728, 3392, 6848, 1363
46, -36, 56, -16, 96, 64, 256, 384, 896, 1664, 3456, 6784, 1369
The main diagonal 1,8,16,... is essentially A000079.
A subdiagonal is 2, 4, 8, 16, ... A155559.
Other diagonals are 3, 12, 24, 48, ... = 3*A151821, 6, 12, 24, ... = A082505 and -2, -4, -8, -16, ..., a negated variant of A171449.

Programs

  • GAP
    List([1..40], n-> (5*2^n - 2*(-1)^n - 9)/3); # G. C. Greubel, Dec 01 2019
  • Magma
    [5*2^n/3-2*(-1)^n/3-3: n in [1..40]]; // Vincenzo Librandi, Aug 05 2011
    
  • Maple
    seq( (5*2^n -2*(-1)^n -9)/3, n=1..40); # G. C. Greubel, Dec 01 2019
  • Mathematica
    LinearRecurrence[{2,1,-2},{1,3,11},40] (* Harvey P. Dale, Oct 01 2018 *)
  • PARI
    vector(40, n, (5*2^n - 2*(-1)^n - 9)/3) \\ G. C. Greubel, Dec 01 2019
    
  • Sage
    [(5*2^n - 2*(-1)^n - 9)/3 for n in (1..40)] # G. C. Greubel, Dec 01 2019
    

Formula

a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3).
a(n+1) - 2*a(n) = A010686(n-1).
a(n) = A084214(n+1) - 3.
G.f.: x*(1 + x + 4*x^2) / ( (1-x)*(1-2*x)*(1+x) ).
a(2n+3) - a(2n+1) = 10*A000302(n).
E.g.f.: (-2*exp(-x) + 6 - 9*exp(x) + 5*exp(2*x))/3. - G. C. Greubel, Dec 01 2019

A176260 Periodic sequence: Repeat 5, 1.

Original entry on oeis.org

5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5
Offset: 0

Views

Author

Klaus Brockhaus, Apr 13 2010

Keywords

Comments

Interleaving of A010716 and A000012.
Also continued fraction expansion of (5+3*sqrt(5))/2.
Also decimal expansion of 17/33.
Essentially first differences of A047264.
Binomial transform of 5 followed by -A122803 without initial terms 1, -2.
Inverse binomial transform of 5 followed by A007283 without initial term 3.
Second inverse binomial transform of A168607 without initial term 3.
Exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 3*x^2 + 3*x^3 + 6*x^4 + 6*x^5 + ... is the o.g.f. for A008805. - Peter Bala, Mar 13 2015

Crossrefs

Cf. A010716 (all 5's sequence), A000012 (all 1's sequence), A090550 (decimal expansion of (5+3*sqrt(5))/2), A010686 (repeat 1, 5), A047264 (congruent to 0 or 5 mod 6), A122803 (powers of -2), A007283 (3*2^n), A168607 (3^n+2), A008805.

Programs

  • Magma
    &cat[ [5, 1]: n in [0..52] ];
    [ 3+2*(-1)^n: n in [0..104] ];

Formula

a(n) = 3+2*(-1)^n.
a(n) = a(n-2) for n > 1; a(0) = 5, a(1) = 1.
a(n) = -a(n-1)+6 for n > 0; a(0) = 5.
a(n) = 5*((n+1) mod 2)+(n mod 2).
a(n) = A010686(n+1).
G.f.: (5+x)/(1-x^2).
From Amiram Eldar, Jan 01 2023: (Start)
Multiplicative with a(2^e) = 5, and a(p^e) = 1 for p >= 3.
Dirichlet g.f.: zeta(s)*(1+2^(2-s)). (End)
E.g.f.: 5*cosh(x) + sinh(x). - Stefano Spezia, Feb 09 2025

A021070 Decimal expansion of 1/66.

Original entry on oeis.org

0, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 5
Offset: 0

Views

Author

Keywords

Examples

			0.015151515151515151515151515...
		

Crossrefs

A010686 shifted right.

Programs

  • Mathematica
    Join[{0},RealDigits[1/66,10,120][[1]]] (* or *) PadRight[{0},120,{5,1}] (* Harvey P. Dale, Dec 26 2021 *)

Formula

Multiplicative with a(2^e) = 5, a(p^e) = 1 otherwise. - David W. Wilson, Jun 12 2005
Dirichlet g.f.: zeta(s) * (1 + 1/2^(s-2)). - Amiram Eldar, Jun 09 2025

A173261 Array T(n,k) read by antidiagonals: T(n,2k)=1, T(n,2k+1)=n, n>=2, k>=0.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 1, 4, 1, 2, 1, 5, 1, 3, 1, 1, 6, 1, 4, 1, 2, 1, 7, 1, 5, 1, 3, 1, 1, 8, 1, 6, 1, 4, 1, 2, 1, 9, 1, 7, 1, 5, 1, 3, 1, 1, 10, 1, 8, 1, 6, 1, 4, 1, 2, 1, 11, 1, 9, 1, 7, 1, 5, 1, 3, 1, 1, 12, 1, 10, 1, 8, 1, 6, 1, 4, 1, 2, 1, 13, 1, 11, 1, 9, 1, 7, 1, 5, 1, 3, 1, 1, 14, 1, 12, 1, 10, 1, 8, 1, 6, 1, 4, 1, 2
Offset: 2

Views

Author

Paul Curtz, Feb 14 2010

Keywords

Comments

One may define another array B(n,0) = -1, B(n,k) = T(n,k-1) + 2*B(n,k-1), n>=2, which also starts in columns k>=0, as follows:
-1, -1, 0, 1, 4, 9, 20, 41, 84, 169, 340, 681, 1364 ...: A084639;
-1, -1, 1, 3, 9, 19, 41, 83, 169, 339, 681, 1363, 2729;
-1, -1, 2, 5, 14, 29, 62, 125, 254, 509, 1022, 2045, 4094;
-1, -1, 3, 7, 19, 39, 83, 167, 339, 679, 1363, 2727, 5459 ...: -A173114;
B(n,k) = (n-1)*A001045(k) - T(n,k).
First differences are B(n,k+1) - B(n,k) = (n-1)*A001045(k).

Examples

			The array T(n,k) starts in row n=2 with columns k>=0 as:
  1,  2, 1,  2, 1,  2, 1,  2, 1,  2, 1,  2 ... A000034;
  1,  3, 1,  3, 1,  3, 1,  3, 1,  3, 1,  3 ... A010684;
  1,  4, 1,  4, 1,  4, 1,  4, 1,  4, 1,  4 ... A010685;
  1,  5, 1,  5, 1,  5, 1,  5, 1,  5, 1,  5 ... A010686;
  1,  6, 1,  6, 1,  6, 1,  6, 1,  6, 1,  6 ... A010687;
  1,  7, 1,  7, 1,  7, 1,  7, 1,  7, 1,  7 ... A010688;
  1,  8, 1,  8, 1,  8, 1,  8, 1,  8, 1,  8 ... A010689;
  1,  9, 1,  9, 1,  9, 1,  9, 1,  9, 1,  9 ... A010690;
  1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10 ... A010691.
Antidiagonal triangle begins as:
  1;
  1,  2;
  1,  3,  1;
  1,  4,  1,  2;
  1,  5,  1,  3,  1;
  1,  6,  1,  4,  1,  2;
  1,  7,  1,  5,  1,  3,  1;
  1,  8,  1,  6,  1,  4,  1,  2;
  1,  9,  1,  7,  1,  5,  1,  3,  1;
  1, 10,  1,  8,  1,  6,  1,  4,  1,  2;
  1, 11,  1,  9,  1,  7,  1,  5,  1,  3,  1;
  1, 12,  1, 10,  1,  8,  1,  6,  1,  4,  1,  2;
  1, 13,  1, 11,  1,  9,  1,  7,  1,  5,  1,  3,  1;
  1, 14,  1, 12,  1, 10,  1,  8,  1,  6,  1,  4,  1,  2;
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= (1/2)*((n+3) - (n+1)*(-1)^k);
    Table[T[n-k, k], {n,2,17}, {k,2,n}]//Flatten (* G. C. Greubel, Dec 03 2021 *)
  • Sage
    flatten([[(1/2)*((n-k+3) - (n-k+1)*(-1)^k) for k in (2..n)] for n in (2..17)]) # G. C. Greubel, Dec 03 2021

Formula

From G. C. Greubel, Dec 03 2021: (Start)
T(n, k) = (1/2)*((n+3) - (n+1)*(-1)^k).
Sum_{k=0..n} T(n-k, k) = A024206(n).
Sum_{k=0..floor((n+2)/2)} T(n-2*k+2, k) = (1/16)*(2*n^2 4*n -5*(1 +(-1)^n) + 4*sin(n*Pi/2)) (diagonal sums).
T(2*n-2, n) = A093178(n). (End)

A216639 A027642(6*n+6)/(sequence of period 2:repeat 42,210).

Original entry on oeis.org

1, 13, 19, 13, 341, 9139, 43, 221, 19, 270413, 1541, 667147, 79, 16211, 6479, 21437, 103, 996151, 1, 11086933, 103759, 20033, 6533, 11341499, 51491, 8545667, 3097, 16211, 59, 34408161359, 1, 4137341, 5826521, 1339, 219666403, 72719023, 223, 2977, 1501, 45423164501, 83
Offset: 0

Views

Author

Paul Curtz, Sep 12 2012

Keywords

Comments

Is a(n) always an integer? Is there an a(n) ending with 5?
It appears (tested for n <= 800) that a(n) mod 9 is always one of {1, 2, 4, 5, 7, 8}.
There is a similar sequence of ratios A027642(10n+1)/(66*A010686(n)) which starts 1, 1, 217, 41, 1, 172081, 71, 697, 4123, 101, 23, 7055321, 131, 2059, 32767, 697, 1, 21896102683,...
a(n) is always an integer: 42 = 2*3*7 and 1, 2, and 6 divide 12n+6; 210 = 2*3*5*7 and 1, 2, 4, and 6 divide 12n+12. a(n) never ends in 5 (or 0) since 12n+6 is not divisible by 4 hence the (12n+6)-th Bernoulli denominator is not divisible by 5, and Bernoulli denominators are squarefree and hence the (12n+12)-th Bernoulli denominator, divided by 210, cannot be divisible by 5. - Charles R Greathouse IV, Sep 12 2012
The previous comments argue that 3 or 5 are never prime divisors of a(n). In addition (tested up to n <=900), 7 apparently is also a non-divisor of a(n). In summary, the prime divisors appear all to be in A140461. - Jean-François Alcover, Sep 17 2012

Crossrefs

Programs

Formula

a(n) = A027642(6*n+6)/(42*A010686(n)).

Extensions

a(20)-a(40) from Charles R Greathouse IV, Sep 12 2012

A135537 Period 4: repeat [7, 5, 2, 4].

Original entry on oeis.org

7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5, 2, 4, 7, 5
Offset: 0

Views

Author

Paul Curtz, Feb 22 2008

Keywords

Crossrefs

Programs

Formula

a(n) = A135536(n) mod 9.
O.g.f.: ((x+5)/(x^2+1)+9*(1-x))/2. a(n) = ((-1)^floor(n/2) * A010686(n+1) + 9)/2. - R. J. Mathar, Feb 23 2008
From Wesley Ivan Hurt, Jul 08 2016: (Start)
a(n) = a(n-1) - a(n-2) + a(n-3) for n>2, a(n) = a(n-4) for n>3.
a(n) = A021408(n) for n>1. (End)
Previous Showing 11-19 of 19 results.