cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A278545 Number of neighbors of the n-th term in a full square array read by antidiagonals.

Original entry on oeis.org

3, 5, 5, 5, 8, 5, 5, 8, 8, 5, 5, 8, 8, 8, 5, 5, 8, 8, 8, 8, 5, 5, 8, 8, 8, 8, 8, 5, 5, 8, 8, 8, 8, 8, 8, 5, 5, 8, 8, 8, 8, 8, 8, 8, 5, 5, 8, 8, 8, 8, 8, 8, 8, 8, 5, 5, 8, 8, 8, 8, 8, 8, 8, 8, 8, 5, 5, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 5, 5, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 5, 5, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 5
Offset: 1

Views

Author

Omar E. Pol, Nov 23 2016

Keywords

Comments

Apart from the first row and the first column, the rest of the elements are 8's.
For the same idea but for a right triangle see A278480; for an isosceles triangle see A278481; for a square spiral see A010731; and for a hexagonal spiral see A010722.

Examples

			The corner of the square array begins:
3,5,5,5,5,5,5,5,5,5,...
5,8,8,8,8,8,8,8,8,...
5,8,8,8,8,8,8,8,...
5,8,8,8,8,8,8,...
5,8,8,8,8,8,...
5,8,8,8,8,...
5,8,8,8,...
5,8,8,...
5,8,...
5,...
...
		

Crossrefs

Antidiagonal sums give 3 together with the elements > 2 of A017089.

Programs

  • Maple
    3, seq(op([5,8$i,5]),i=0..20); # Robert Israel, Dec 04 2016

Formula

G.f. 3+x+8*x/(1-x)-3*(1+x)*Theta_2(0,sqrt(x))/(2*x^(1/8)) where Theta_2 is a Jacobi Theta function. - Robert Israel, Dec 04 2016

A349577 Decimal expansion of the volume of the solid formed by the intersection of 4 right circular unit-diameter cylinders whose axes pass through the diagonals of a cube.

Original entry on oeis.org

5, 6, 8, 4, 0, 6, 0, 7, 2, 9, 4, 4, 5, 1, 7, 9, 9, 9, 1, 0, 9, 1, 4, 0, 0, 6, 0, 5, 7, 0, 2, 5, 7, 1, 4, 7, 7, 6, 0, 0, 9, 4, 4, 0, 5, 1, 4, 5, 8, 3, 9, 0, 2, 6, 8, 8, 1, 0, 0, 0, 3, 6, 3, 0, 9, 5, 7, 5, 6, 8, 6, 9, 2, 0, 0, 3, 4, 8, 5, 7, 6, 7, 4, 1, 3, 7, 3, 4, 5, 3, 3, 2, 5, 9, 6, 4, 3, 6, 5, 9, 7, 7, 1, 4, 9
Offset: 0

Views

Author

Amiram Eldar, Nov 22 2021

Keywords

Comments

Equivalently, the axes of the cylinders can be placed along the lines joining the vertices of a regular tetrahedron with the centers of the faces on the opposite sides.
This constant was first calculated by Moore (1974).
The corresponding volumes in the analogous cases of 2 and 3 mutually orthogonal cylinders are 2/3 (A010722) and 2 - sqrt(2) (A101465), respectively.

Examples

			0.56840607294451799910914006057025714776009440514583...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(3/2) * Sqrt[2] * (2 - Sqrt[3]), 10, 100][[1]]

Formula

Equals (3/2) * sqrt(2) * (2 - sqrt(3)).

A145429 Decimal expansion of Sum_{n > 0} n*(n!)^2/(2n)!.

Original entry on oeis.org

1, 0, 6, 9, 7, 3, 3, 1, 9, 2, 0, 5, 2, 0, 4, 8, 4, 1, 1, 2, 4, 3, 1, 2, 8, 5, 0, 1, 6, 9, 8, 2, 5, 6, 8, 2, 9, 3, 9, 6, 4, 5, 9, 1, 6, 6, 2, 4, 2, 8, 3, 1, 2, 3, 9, 0, 1, 5, 5, 2, 9, 9, 8, 5, 6, 4, 1, 8, 0, 5, 1, 5, 1, 3, 6, 1, 4, 1, 1, 9, 7, 4, 1, 5, 2, 0, 2, 7, 7, 7, 5, 1, 5
Offset: 1

Views

Author

R. J. Mathar, Feb 08 2009

Keywords

Comments

Also, decimal expansion of Sum_{n >= 0} n/binomial(2*n, n). - Bruno Berselli, Sep 14 2015

Examples

			1.069733192052..
		

References

  • Alexander Apelblat, Tables of Integrals and Series, Harri Deutsch, (1996), 4.1.35.

Crossrefs

Cf. A010722 (decimal expansion of Sum_{n >= 0} n/binomial(2*n+1, n)).

Programs

  • Maple
    2/3+2/27*Pi*3^(1/2) ;
  • Mathematica
    RealDigits[2/3 + 2*Pi/(9*Sqrt[3]), 10, 100][[1]] (* Amiram Eldar, Nov 16 2021 *)

Formula

Equals 10*A021139*(9+A000796*A002194).
From Amiram Eldar, Nov 16 2021: (Start)
Equals 2/3 + 2*Pi/(9*sqrt(3)).
Equals 1 + Integral_{x>=1} 1/(x^2 + x + 1)^2 dx. (End)

A162594 Differences of cubes: T(n,n) = n^3, T(n,k) = T(n,k+1) - T(n-1,k), 0 <= k < n, triangle read by rows.

Original entry on oeis.org

0, 1, 1, 6, 7, 8, 6, 12, 19, 27, 0, 6, 18, 37, 64, 0, 0, 6, 24, 61, 125, 0, 0, 0, 6, 30, 91, 216, 0, 0, 0, 0, 6, 36, 127, 343, 0, 0, 0, 0, 0, 6, 42, 169, 512, 0, 0, 0, 0, 0, 0, 6, 48, 217, 729, 0, 0, 0, 0, 0, 0, 0, 6, 54, 271, 1000, 0, 0, 0, 0, 0, 0, 0, 0, 6, 60, 331, 1331
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 07 2009

Keywords

Comments

T(n,n) = A000578(n);
T(n,n-1) = A003215(n-1), n > 0;
T(n,n-2) = A008588(n-2), n > 1;
T(n,n-3) = A010722(n-3), n > 2;
T(n,n-j) = A000004(n-j), 4 <= j <= n;
for n > 2: sum of n-th row = (n+1)^3.

Examples

			Triangle begins:
  0,
  1,  1,
  6,  7,  8,
  6, 12, 19, 27,
  0,  6, 18, 37, 64,
  0,  0,  6, 24, 61, 125,
  ...
		

Crossrefs

Cf. A162593 (differences of squares).

Programs

  • Mathematica
    T[n_, n_] := n^3; T[n_, k_] := T[n, k] = T[n, k + 1] - T[n - 1, k]; Table[T[n, k], {n, 0, 15}, {k, 0, n}] // Flatten (* G. C. Greubel, Jul 04 2018 *)
  • PARI
    T(n, k) = if (k==n, n^3, T(n, k+1) - T(n-1, k));
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print); \\ Michel Marcus, Jul 05 2018

A343052 Table read by ascending antidiagonals: T(k, n) is the minimum vertex sum in a perimeter-magic k-gon of order n.

Original entry on oeis.org

6, 12, 6, 15, 10, 6, 24, 15, 12, 6, 28, 21, 15, 10, 6, 40, 28, 24, 15, 12, 6, 45, 36, 28, 21, 15, 10, 6, 60, 45, 40, 28, 24, 15, 12, 6, 66, 55, 45, 36, 28, 21, 15, 10, 6, 84, 66, 60, 45, 40, 28, 24, 15, 12, 6, 91, 78, 66, 55, 45, 36, 28, 21, 15, 10, 6, 112, 91, 84, 66, 60, 45, 40, 28, 24, 15, 12, 6
Offset: 3

Views

Author

Stefano Spezia, Apr 03 2021

Keywords

Examples

			The table begins:
k\n|   3   4   5   6   7 ...
---+--------------------
3  |   6   6   6   6   6 ...
4  |  12  10  12  10  12 ...
5  |  15  15  15  15  15 ...
6  |  24  21  24  21  24 ...
7  |  28  28  28  28  28 ...
...
		

Crossrefs

Cf. A000217 (n = 4), A010722 (k = 3), A010854 (k = 5), A010867 (k = 7), A265225, A343053 (maximum).

Programs

  • Mathematica
    T[k_,n_]:=k(1+k+Mod[n,2](1-Mod[k,2]))/2; Table[T[k+3-n,n],{k,3,14},{n,3,k}]//Flatten

Formula

O.g.f.: x*(1 + x^2 + y + x*(2 + 3*y))/((1 - x)^3*(1 + x)^2*(1 - y^2)).
E.g.f.: x*((5 + 2*x)*cosh(x + y) - cosh(x - y) + 2*(2 + x)*sinh(x + y))/4.
T(k, n) = k*(1 + k + (n mod 2)*(1 - (k mod 2)))/2.
T(k, 3) = A265225(k-1) (conjectured).

A021019 Decimal expansion of 1/15.

Original entry on oeis.org

0, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 0

Views

Author

Keywords

Examples

			0.06666666666666666666666666666666666666666666666666666...
		

Crossrefs

Formula

From Elmo R. Oliveira, Aug 05 2024: (Start)
G.f.: 6*x/(1-x).
E.g.f.: 6*(exp(x) - 1).
a(n) = 6 for n >= 1. (End)

A176355 Periodic sequence: Repeat 6, 1.

Original entry on oeis.org

6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6
Offset: 0

Views

Author

Klaus Brockhaus, Apr 15 2010

Keywords

Comments

Interleaving of A010722 and A000012.
Also continued fraction expansion of 3+sqrt(15).
Also decimal expansion of 61/99.
Essentially first differences of A047335.
Binomial transform of 6 followed by A166577 without initial terms 1, 4.
Inverse binomial transform of A005009 preceded by 6.

Examples

			0.6161616161616161616161616161616161616161...
		

Crossrefs

Cf. A010722 (all 6's sequence), A000012 (all 1's sequence), A092294 (decimal expansion of 3+sqrt(15)), A010687 (repeat 1, 6), A047335 (congruent to 0 or 6 mod 7), A166577, A005009 (7*2^n).

Programs

  • Magma
    &cat[ [6, 1]: n in [0..52] ];
    
  • Magma
    [(7+5*(-1)^n)/2: n in [0..104]];
  • Mathematica
    PadRight[{},120,{6,1}] (* Harvey P. Dale, Apr 12 2018 *)

Formula

G.f.: (6 + x)/(1 - x^2).
a(n) = (7 + 5*(-1)^n)/2.
a(n) = a(n-2) for n>1, a(0)=6, a(1)=1.
a(n) = -a(n-1)+7 for n>0, a(0)=6.
a(n) = 6*((n+1) mod 2) + (n mod 2).
a(n) = A010687(n+1).
a(n) = 13^n mod 7. - Vincenzo Librandi, Jun 01 2016
From Amiram Eldar, Jan 01 2023: (Start)
Multiplicative with a(2^e) = 6, and a(p^e) = 1 for p >= 3.
Dirichlet g.f.: zeta(s)*(1+5/2^s). (End)
E.g.f.: 6*cosh(x) + sinh(x). - Stefano Spezia, Feb 09 2025

A347769 a(0) = 0; a(1) = 1; for n > 1, a(n) = A001065(a(n-1)) = sigma(a(n-1)) - a(n-1) (the sum of aliquot parts of a(n-1)) if this is not yet in the sequence; otherwise a(n) is the smallest number missing from the sequence.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 15, 13, 14, 17, 18, 21, 19, 20, 22, 23, 24, 36, 55, 25, 26, 27, 28, 29, 30, 42, 54, 66, 78, 90, 144, 259, 45, 33, 31, 32, 34, 35, 37, 38, 39, 40, 50, 43, 41, 44, 46, 47, 48, 76, 64, 63, 49, 51, 52, 53, 56, 57, 58, 59, 60, 108, 172
Offset: 0

Views

Author

Eric Chen, Sep 13 2021

Keywords

Comments

This sequence is a permutation of the nonnegative integers iff Catalan's aliquot sequence conjecture (also called Catalan-Dickson conjecture) is true.
a(563) = 276 is the smallest number whose aliquot sequence has not yet been fully determined.
As long as the aliquot sequence of 276 is not known to be finite or eventually periodic, a(563+k) = A008892(k).

Examples

			a(0) = 0, a(1) = 1;
since A001065(a(1)) = 0 has already appeared in this sequence, a(2) = 2;
since A001065(a(2)) = 1 has already appeared in this sequence, a(3) = 3;
...
a(11) = 11;
since A001065(a(11)) = 1 has already appeared in this sequence, a(12) = 12;
since A001065(a(12)) = 16 has not yet appeared in this sequence, a(13) = A001065(a(12)) = 16;
since A001065(a(13)) = 15 has not yet appeared in this sequence, a(14) = A001065(a(13)) = 15;
since A001065(a(14)) = 9 has already appeared in this sequence, a(15) = 13;
...
		

Crossrefs

Cf. A032451.
Cf. A001065 (sum of aliquot parts).
Cf. A003023, A044050, A098007, A098008: ("length" of aliquot sequences, four versions).
Cf. A007906.
Cf. A115060 (maximum term of aliquot sequences).
Cf. A115350 (termination of the aliquot sequences).
Cf. A098009, A098010 (records of "length" of aliquot sequences).
Cf. A290141, A290142 (records of maximum term of aliquot sequences).
Aliquot sequences starting at various numbers: A000004 (0), A000007 (1), A033322 (2), A010722 (6), A143090 (12), A143645 (24), A010867 (28), A008885 (30), A143721 (38), A008886 (42), A143722 (48), A143723 (52), A008887 (60), A143733 (62), A143737 (68), A143741 (72), A143754 (75), A143755 (80), A143756 (81), A143757 (82), A143758 (84), A143759 (86), A143767 (87), A143846 (88), A143847 (96), A143919 (100), A008888 (138), A008889 (150), A008890 (168), A008891 (180), A203777 (220), A008892 (276), A014360 (552), A014361 (564), A074907 (570), A014362 (660), A269542 (702), A045477 (840), A014363 (966), A014364 (1074), A014365 (1134), A074906 (1521), A143930 (3630), A072891 (12496), A072890 (14316), A171103 (46758), A072892 (1264460).

Programs

  • PARI
    A347769_list(N)=print1(0, ", "); if(N>0, print1(1, ", ")); v=[0, 1]; b=1; for(n=2, N, if(setsearch(Set(v), sigma(b)-b), k=1; while(k<=n, if(!setsearch(Set(v), k), b=k; k=n+1, k++)), b=sigma(b)-b); print1(b, ", "); v=concat(v, b))

A387235 Decimal expansion of 2*log(2)/3.

Original entry on oeis.org

4, 6, 2, 0, 9, 8, 1, 2, 0, 3, 7, 3, 2, 9, 6, 8, 7, 2, 9, 4, 4, 8, 2, 1, 4, 1, 4, 3, 0, 5, 4, 5, 1, 0, 4, 5, 3, 8, 3, 6, 6, 6, 7, 5, 6, 2, 4, 0, 1, 7, 0, 1, 6, 9, 4, 1, 3, 7, 8, 6, 6, 7, 2, 9, 9, 5, 5, 9, 5, 7, 4, 7, 9, 7, 9, 7, 9, 6, 4, 7, 7, 0, 7, 0, 5, 7, 5, 5, 5, 1, 3, 3, 0, 9, 4, 5, 7, 9, 1, 6
Offset: 0

Views

Author

Stefano Spezia, Aug 23 2025

Keywords

Comments

Area enclosed by the curve of the equation x^6 + y^6 - x^3*y + x*y^3 = 0.
The asymptotic mean of A256232. - Amiram Eldar, Aug 23 2025

Examples

			0.46209812037329687294482141430545104538366675624...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[2Log[2]/3,10,100][[1]]

Formula

Equals log(4)/3 = A010701*A016627.
Equals Sum_{k>=0} (-1)^k/((3*k + 1)*(3*k + 2)) = Integral_{x=0..1} x^2*log(1 + 1/x^3) = -Integral_{x=0..1} log[1 - x^6]/x^4. [Shamos]
Equals A016627/3 = 2*A193535. - Hugo Pfoertner, Aug 23 2025

A257936 Decimal expansion of 11/18.

Original entry on oeis.org

6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Bruno Berselli, May 13 2015

Keywords

Comments

Decimal expansion of Sum_{i>=1} 1/A028552(i).
Also, continued fraction expansion of 5+A001622.

Examples

			.6111111111111111111111111111111111111111111111111111111111111111...
		

Crossrefs

Cf. A010716 (decimal expansion of 5/9 = 10/18), A010722 (decimal expansion of 2/3 = 12/18).

Programs

Formula

Equals A020773 + A142464.
From Elmo R. Oliveira, Aug 05 2024: (Start)
G.f.: (6-5*x)/(1-x).
E.g.f.: exp(x) + 5.
a(n) = 1, n >= 1. (End)
Previous Showing 11-20 of 20 results.