A278545 Number of neighbors of the n-th term in a full square array read by antidiagonals.
3, 5, 5, 5, 8, 5, 5, 8, 8, 5, 5, 8, 8, 8, 5, 5, 8, 8, 8, 8, 5, 5, 8, 8, 8, 8, 8, 5, 5, 8, 8, 8, 8, 8, 8, 5, 5, 8, 8, 8, 8, 8, 8, 8, 5, 5, 8, 8, 8, 8, 8, 8, 8, 8, 5, 5, 8, 8, 8, 8, 8, 8, 8, 8, 8, 5, 5, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 5, 5, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 5, 5, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 5
Offset: 1
Examples
The corner of the square array begins: 3,5,5,5,5,5,5,5,5,5,... 5,8,8,8,8,8,8,8,8,... 5,8,8,8,8,8,8,8,... 5,8,8,8,8,8,8,... 5,8,8,8,8,8,... 5,8,8,8,8,... 5,8,8,8,... 5,8,8,... 5,8,... 5,... ...
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
3, seq(op([5,8$i,5]),i=0..20); # Robert Israel, Dec 04 2016
Formula
G.f. 3+x+8*x/(1-x)-3*(1+x)*Theta_2(0,sqrt(x))/(2*x^(1/8)) where Theta_2 is a Jacobi Theta function. - Robert Israel, Dec 04 2016
Comments