cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 78 results. Next

A212119 Triangle read by rows T(n,k), n>=1, k>=1, where T(n,k) is the number of divisors d of n with min(d, n/d) = k.

Original entry on oeis.org

1, 2, 2, 2, 1, 2, 0, 2, 2, 2, 0, 2, 2, 2, 0, 1, 2, 2, 0, 2, 0, 0, 2, 2, 2, 2, 0, 0, 2, 2, 0, 2, 0, 2, 2, 2, 0, 1, 2, 0, 0, 0, 2, 2, 2, 0, 2, 0, 0, 0, 2, 2, 0, 2, 2, 0, 2, 0, 2, 2, 0, 0, 2, 0, 0, 0, 2, 2, 2, 2, 2, 0, 0, 0, 1, 2, 2, 0, 0, 0, 2, 0, 2, 0, 0
Offset: 1

Views

Author

Omar E. Pol, Jul 02 2012

Keywords

Comments

Column k lists the numbers A040000: 1, 2, 2, 2, 2... interleaved with k-1 zeros, starting in row k^2.
The sum of row n gives A000005(n), the number of divisors of n.
T(n,k) is also the number of divisors of n on the edges of k-th triangle in the diagram of divisors (see link section). See also A212120.
It appears that there are only eight rows that do not contain zeros. The indices of these rows are 1, 2, 3, 4, 6, 8, 12, 24, the divisors of 24, see A018253. - Omar E. Pol, Dec 03 2013

Examples

			Row 10 gives 2, 2, 0 therefore the sums of row 10 is 2+2+0 = 4, the same as A000005(10), the number of divisors of 10.
Written as an irregular triangle the sequence begins:
1;
2;
2;
2, 1;
2, 0;
2, 2;
2, 0;
2, 2;
2, 0, 1;
2, 2, 0;
2, 0, 0;
2, 2, 2;
2, 0, 0;
2, 2, 0;
2, 0, 2;
2, 2, 0, 1;
2, 0, 0, 0;
2, 2, 2, 0;
2, 0, 0, 0;
2, 2, 0, 2;
2, 0, 2, 0;
2, 2, 0, 0;
2, 0, 0, 0;
2, 2, 2, 2;
2, 0, 0, 0, 1;
		

Crossrefs

Row sums give A000005. Column 1 is A040000. Column 2 gives the absolute values of A176742.

Extensions

Definition changed by Franklin T. Adams-Watters, Jul 12 2012

A320222 Number of unlabeled rooted trees with n nodes in which the non-leaf branches directly under any given node are all equal.

Original entry on oeis.org

1, 1, 2, 4, 9, 18, 39, 78, 161, 324, 658, 1316, 2657, 5314, 10668, 21347, 42777, 85554, 171290, 342580, 685498, 1371037, 2742733, 5485466, 10972351, 21944711, 43892080, 87784323, 175574004, 351148008, 702307038, 1404614076, 2809249582, 5618499824, 11237042426
Offset: 1

Views

Author

Gus Wiseman, Oct 07 2018

Keywords

Comments

This is a weaker condition than achirality (cf. A003238).

Examples

			The a(1) = 1 through a(6) = 18 rooted trees:
  o  (o)  (oo)   (ooo)    (oooo)     (ooooo)
          ((o))  ((oo))   ((ooo))    ((oooo))
                 (o(o))   (o(oo))    (o(ooo))
                 (((o)))  (oo(o))    (oo(oo))
                          (((oo)))   (ooo(o))
                          ((o)(o))   (((ooo)))
                          ((o(o)))   ((o(oo)))
                          (o((o)))   ((oo(o)))
                          ((((o))))  (o((oo)))
                                     (o(o)(o))
                                     (o(o(o)))
                                     (oo((o)))
                                     ((((oo))))
                                     (((o)(o)))
                                     (((o(o))))
                                     ((o((o))))
                                     (o(((o))))
                                     (((((o)))))
		

Crossrefs

Programs

  • Mathematica
    saue[n_]:=Sum[If[SameQ@@DeleteCases[ptn,1],If[DeleteCases[ptn,1]=={},1,saue[DeleteCases[ptn,1][[1]]]],0],{ptn,IntegerPartitions[n-1]}];
    Table[saue[n],{n,15}]
  • PARI
    seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + sum(k=2, n-1, (n-1)\k*v[k])); v} \\ Andrew Howroyd, Oct 26 2018

Formula

a(n) = 1 + Sum_{k = 2..n-1} floor((n-1)/k) * a(k).
a(n) ~ c * 2^n, where c = 0.3270422384018894564479397100499014525700668391191792769625407295138546463... - Vaclav Kotesovec, Sep 07 2019

A277647 Triangle T(n,k) = floor(n/sqrt(k)) for 1 <= k <= n^2, read by rows.

Original entry on oeis.org

1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 4, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 4, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 4, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Jason Kimberley, Nov 09 2016

Keywords

Examples

			The first five rows of the triangle are:
1;
2, 1, 1, 1;
3, 2, 1, 1, 1, 1, 1, 1, 1;
4, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
5, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
		

Crossrefs

The 1000th row is A033432.

Programs

  • Magma
    A277647:=func;
    [A277647(n,k):k in[1..n^2],n in[1..7]];
    
  • Mathematica
    Table[Floor[n/Sqrt@ k], {n, 7}, {k, n^2}] // Flatten (* Michael De Vlieger, Nov 24 2016 *)
  • PARI
    row(n) = for(k=1, n^2, print1(floor(n/sqrt(k)), ", ")); print("")
    trianglerows(n) = for(k=1, n, row(k))
    /* Print initial five rows of triangle as follows: */
    trianglerows(5) \\ Felix Fröhlich, Nov 12 2016

Formula

T(n,k) = A000196(A277646(n,k)).
T(n,k)sqrt(k) <= n < (T(n,k)+1)sqrt(k).

A014668 a(1) = 1, a(n) = Sum_{k=1..n-1} Sum_{d|k} a(d).

Original entry on oeis.org

1, 1, 3, 7, 16, 33, 71, 143, 295, 594, 1206, 2413, 4871, 9743, 19559, 39138, 78428, 156857, 314047, 628095, 1256809, 2513693, 5028594, 10057189, 20116979, 40233975, 80472823, 160945945, 321901713, 643803427, 1287627061, 2575254123, 5150547536, 10301096282
Offset: 1

Views

Author

Benoit Cloitre, Jun 24 2003

Keywords

Comments

Equals eigensequence of triangle A010766 and starting (1, 3, 7, 16, 33, ...) = row sums of triangle A163313. - Gary W. Adamson, Jul 30 2009. Gary Adamson's comment may be restated as "This sequence shifts left by one place under the floor transform." - N. J. A. Sloane, Feb 05 2016
The Gould & Quaintance reference, published in 2007, says incorrectly that this sequence is not in the OEIS. - Olivier Gérard, Oct 20 2011

Crossrefs

Cf. A010766, A163313. - Gary W. Adamson, Jul 30 2009

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember;
          `if`(n=1, 1, add(add(a(d), d=divisors(k)), k=1..n-1))
        end:
    seq(a(n), n=1..40);  # Alois P. Heinz, Oct 28 2011
  • Mathematica
    a[1] = 1; a[n_] := a[n] = Sum[Sum[a[d], {d, Divisors[k]}], {k, 1, n-1}]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Apr 07 2015 *)
  • PARI
    // an=vector(100); a(n)=if(n<0,0,an[n]); // an[1]=1; for(n=2,100,an[n]=sum(k=1,n-1,sumdiv(k,d,a(d))))

Formula

a(n) is asymptotic to c*2^n where c = 0.59960731361450033896934...
a(n+1) = Sum_{k=1..n} a(k)*floor(n/k). - Franklin T. Adams-Watters, Mar 21 2017
G.f. A(x) satisfies: A(x) = x * (1 + (1/(1 - x)) * Sum_{k>=1} A(x^k)). - Ilya Gutkovskiy, Feb 25 2020

A118013 Triangle read by rows: T(n,k) = floor(n^2/k), 1<=k<=n.

Original entry on oeis.org

1, 4, 2, 9, 4, 3, 16, 8, 5, 4, 25, 12, 8, 6, 5, 36, 18, 12, 9, 7, 6, 49, 24, 16, 12, 9, 8, 7, 64, 32, 21, 16, 12, 10, 9, 8, 81, 40, 27, 20, 16, 13, 11, 10, 9, 100, 50, 33, 25, 20, 16, 14, 12, 11, 10, 121, 60, 40, 30, 24, 20, 17, 15, 13, 12, 11, 144, 72, 48, 36, 28, 24, 20, 18, 16, 14
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 10 2006

Keywords

Comments

T(n,1) = A000290(n); T(n,n) = n;
T(n,2) = A007590(n) for n>1;
T(n,3) = A000212(n) for n>2;
T(n,4) = A002620(n) for n>3;
T(n,5) = A118015(n) for n>4;
T(n,6) = A056827(n) for n>5;
central terms give A008574: T(2*k-1,k) = 4*(k-1)+0^(k-1);
row sums give A118014.

Examples

			Triangle begins:
1,
4, 2,
9, 4, 3,
16, 8, 5, 4,
		

Crossrefs

Cf. A010766.

Programs

  • Haskell
    a118013 n k = a118013_tabl !! (n-1) !! (k-1)
    a118013_row n = map (div (n^2)) [1..n]
    a118013_tabl = map a118013_row [1..]
    -- Reinhard Zumkeller, Jan 22 2012
  • PARI
    T(n,k)=n^2\k \\ Charles R Greathouse IV, Jan 15 2012
    

A334466 Square array read by antidiagonals upwards: T(n,k) is the total number of parts in all partitions of n into consecutive parts that differ by k, with n >= 1, k >= 0.

Original entry on oeis.org

1, 3, 1, 4, 1, 1, 7, 3, 1, 1, 6, 1, 1, 1, 1, 12, 3, 3, 1, 1, 1, 8, 4, 1, 1, 1, 1, 1, 15, 3, 3, 3, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 18, 6, 3, 3, 3, 1, 1, 1, 1, 1, 12, 5, 4, 1, 1, 1, 1, 1, 1, 1, 1, 28, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 14, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 24, 3, 6, 3, 3, 3, 3, 1
Offset: 1

Views

Author

Omar E. Pol, May 01 2020

Keywords

Comments

The one-part partition n = n is included in the count.
The column k is related to (k+2)-gonal numbers, assuming that 2-gonals are the nonnegative numbers, 3-gonals are the triangular numbers, 4-gonals are the squares, 5-gonals are the pentagonal numbers, and so on.
Note that the number of parts for T(n,0) = A000203(n), equaling the sum of the divisors of n.
For fixed k>0, Sum_{j=1..n} T(j,k) ~ 2^(3/2) * n^(3/2) / (3*sqrt(k)). - Vaclav Kotesovec, Oct 23 2024

Examples

			Square array starts:
   n\k|   0  1  2  3  4  5  6  7  8  9 10 11 12
   ---+---------------------------------------------
   1  |   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
   2  |   3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
   3  |   4, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
   4  |   7, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
   5  |   6, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
   6  |  12, 4, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, ...
   7  |   8, 3, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, ...
   8  |  15, 1, 3, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, ...
   9  |  13, 6, 4, 3, 1, 3, 1, 3, 1, 1, 1, 1, 1, ...
  10  |  18, 5. 3. 1. 3. 1, 3, 1, 3, 1, 1, 1, 1, ...
  11  |  12, 3, 1, 3, 1, 3, 1, 3, 1, 3, 1, 1, 1, ...
  12  |  28, 4, 6, 4, 3, 1, 3, 1, 3, 1, 3, 1, 1, ...
  ...
For n = 9 we have that:
For k = 0 the partitions of 9 into consecutive parts that differ by 0 (or simply: the partitions of 9 into equal parts) are [9], [3,3,3], [1,1,1,1,1,1,1,1,1]. In total there are 13 parts, so T(9,0) = 13.
For k = 1 the partitions of 9 into consecutive parts that differ by 1 (or simply: the partitions of 9 into consecutive parts) are [9], [5,4], [4,3,2]. In total there are six parts, so T(9,1) = 6.
For k = 2 the partitions of 9 into consecutive parts that differ by 2 are [9], [5, 3, 1]. In total there are four parts, so T(9,2) = 4.
		

Crossrefs

Columns k: A000203 (k=0), A204217 (k=1), A066839 (k=2), A330889 (k=3), A334464 (k=4), A334732 (k=5), A334949 (k=6), A377300 (k=7), A377301 (k=8).
Triangles whose row sums give the column k: A127093 (k=0), A285914 (k=1), A330466 (k=2) (conjectured), A330888 (k=3), A334462 (k=4), A334540 (k=5), A339947 (k=6).
Sequences of number of partitions related to column k: A000005 (k=0), A001227 (k=1), A038548 (k=2), A117277 (k=3), A334461 (k=4), A334541 (k=5), A334948 (k=6).
Tables of partitions related to column k: A010766 (k=0), A286001 (k=1), A332266 (k=2), A334945 (k=3), A334618 (k=4).
Polygonal numbers related to column k: A001477 (k=0), A000217 (k=1), A000290 (k=2), A000326 (k=3), A000384 (k=4), A000566 (k=5), A000567 (k=6).

Programs

  • Mathematica
    nmax = 14;
    col[k_] := col[k] = CoefficientList[Sum[n x^(n(k n - k + 2)/2)/(1 - x^n), {n, 1, nmax}] + O[x]^(nmax+1), x];
    T[n_, k_] := col[k][[n+1]];
    Table[T[n-k, k], {n, 1, nmax}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Nov 30 2020 *)

Formula

The g.f. for column k is Sum_{n>=1} n*x^(n*(k*n-k+2)/2)/(1-x^n). (For proof, see A330889. - N. J. A. Sloane, Nov 21 2020)

A003988 Triangle with subscripts (1,1),(2,1),(1,2),(3,1),(2,2),(1,3), etc. in which entry (i,j) is [ i/j ].

Original entry on oeis.org

1, 2, 0, 3, 1, 0, 4, 1, 0, 0, 5, 2, 1, 0, 0, 6, 2, 1, 0, 0, 0, 7, 3, 1, 1, 0, 0, 0, 8, 3, 2, 1, 0, 0, 0, 0, 9, 4, 2, 1, 1, 0, 0, 0, 0, 10, 4, 2, 1, 1, 0, 0, 0, 0, 0, 11, 5, 3, 2, 1, 1, 0, 0, 0, 0, 0, 12, 5, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 13, 6, 3, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 14, 6, 4, 2, 2, 1, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Keywords

Comments

Another version of A010766.

Crossrefs

Row sums are in A006218. Antidiagonal sums are in A002541.

Programs

  • Haskell
    a003988 n k = (n + 1 - k) `div` k
    a003988_row n = zipWith div [n,n-1..1] [1..n]
    a003988_tabl = map a003988_row [1..]
    -- Reinhard Zumkeller, Apr 13 2012
  • Mathematica
    t[n_, k_] := Quotient[n, k]; Table[t[n-k+1, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 21 2013 *)

Formula

From Franklin T. Adams-Watters, Jan 28 2006: (Start)
T(n,k) = Sum_{i=1..k} A077049(n,i).
G.f.: (1/(1-x))*Sum_{k>0} x^k*y^k/(1-x^k) = (1/(1-x))*Sum_{k>0} x^k * y / (1 - x^k y) = (1/(1-x)) * Sum_{k>0} x^k * Sum_{d|k} y^d = A(x,y)/(1-x) where A(x,y) is the g.f. of A077049. (End)
T(n,k) = floor((n + 1 - k) / k). - Reinhard Zumkeller, Apr 13 2012

Extensions

More terms from James Sellers

A047916 Triangular array read by rows: a(n,k) = phi(n/k)*(n/k)^k*k! if k|n else 0 (1<=k<=n).

Original entry on oeis.org

1, 2, 2, 6, 0, 6, 8, 8, 0, 24, 20, 0, 0, 0, 120, 12, 36, 48, 0, 0, 720, 42, 0, 0, 0, 0, 0, 5040, 32, 64, 0, 384, 0, 0, 0, 40320, 54, 0, 324, 0, 0, 0, 0, 0, 362880, 40, 200, 0, 0, 3840, 0, 0, 0, 0, 3628800, 110, 0, 0, 0, 0, 0, 0, 0, 0, 0, 39916800, 48, 144
Offset: 1

Views

Author

Keywords

Comments

T(n,k) = A054523(n,k) * A010766(n,k)^A002260(n,k) * A166350(n,k). - Reinhard Zumkeller, Jan 20 2014

Examples

			1; 2,2; 6,0,6; 8,8,0,24; 20,0,0,0,120; 12,36,48,0,0,720; ...
		

References

  • J. E. A. Steggall, On the numbers of patterns which can be derived from certain elements, Mess. Math., 37 (1907), 56-61.

Crossrefs

A064649 gives the row sums.
Cf. A002618 (left edge), A000142 (right edge), A049820 (zeros per row), A000005 (nonzeros per row).
See also A247917, A047918, A047919.

Programs

  • Haskell
    import Data.List (zipWith4)
    a047916 n k = a047916_tabl !! (n-1) !! (k-1)
    a047916_row n = a047916_tabl !! (n-1)
    a047916_tabl = zipWith4 (zipWith4 (\x u v w -> x * v ^ u * w))
                   a054523_tabl a002260_tabl a010766_tabl a166350_tabl
    -- Reinhard Zumkeller, Jan 20 2014
    
  • Mathematica
    a[n_, k_] := If[Divisible[n, k], EulerPhi[n/k]*(n/k)^k*k!, 0]; Flatten[ Table[ a[n, k], {n, 1, 12}, {k, 1, n}]] (* Jean-François Alcover, May 04 2012 *)
  • PARI
    a(n,k)=if(n%k, 0, eulerphi(n/k)*(n/k)^k*k!) \\ Charles R Greathouse IV, Feb 09 2017

A123709 a(n) is the number of nonzero elements in row n of triangle A123706.

Original entry on oeis.org

1, 2, 3, 4, 3, 4, 3, 4, 4, 6, 3, 8, 3, 6, 7, 4, 3, 8, 3, 8, 7, 6, 3, 8, 4, 6, 4, 8, 3, 11, 3, 4, 7, 6, 7, 8, 3, 6, 7, 8, 3, 11, 3, 8, 8, 6, 3, 8, 4, 8, 7, 8, 3, 8, 7, 8, 7, 6, 3, 16, 3, 6, 8, 4, 7, 12, 3, 8, 7, 14, 3, 8, 3, 6, 8, 8
Offset: 1

Views

Author

Paul D. Hanna, Oct 09 2006

Keywords

Comments

Triangle A123706 is the matrix inverse of triangle A010766, where A010766(n,k) = [n/k]. a(n) = 4 when n is in A123710. a(n) = 8 when n is in A123711. a(n) = 16 when n is in A123712.

Examples

			a(n) = 3 when n is an odd prime.
a(n) = 7 when n is the product of two different odd primes.  [Corrected by _M. F. Hasler_, Feb 13 2012]
a(n) = 15 when n is the product of three different odd primes.  [Corrected by _M. F. Hasler_, Feb 13 2012]
		

Crossrefs

Programs

  • Mathematica
    Moebius[i_,j_]:=If[Divisible[i,j], MoebiusMu[i/j],0];
    A123709[n_]:=Length[Select[Table[Moebius[n,j]-Moebius[n,j+1],{j,1,n}],#!=0&]];
    Array[A123709, 500] (* Enrique Pérez Herrero, Feb 13 2012 *)
  • PARI
    {a(n)=local(M=matrix(n,n,r,c,if(r>=c,floor(r/c)))^-1); sum(k=1,n,if(M[n,k]==0,0,1))}
    
  • PARI
    A123709(n)=#select((matrix(n, n, r, c, r\c)^-1)[n,],x->x)  \\ M. F. Hasler, Feb 12 2012
    
  • PARI
    A123709(n)={ my(t=moebius(n)); sum(k=2,n, t+0 != t=if(n%k,0,moebius(n\k)))+1}  /* the "t+0 != ..." is required because of a bug in PARI versions <= 2.4.2, maybe beyond, which seems to be fixed in v. 2.5.1 */ \\ M. F. Hasler, Feb 13 2012

Formula

a(n) = 2^(m+1) - 1 when n is the product of m distinct odd primes. [Corrected by M. F. Hasler, Feb 13 2012]
For any k>1, a(n)=2^k if, and only if, n is a nonsquarefree number with A001221(n) = k-1 (= omega(n), number of distinct prime factors), with the only exception of a(n=6)=2^2. - M. F. Hasler, Feb 12 2012
A123709(n) = 1 + #{ k in 1..n-1 | Moebius(n,k+1) <> Moebius(n,k) }, where Moebius(n,k)={moebius(n/k) if n=0 (mod k), 0 else}, cf. link to message by P. Luschny. - M. F. Hasler, Feb 13 2012

A320268 Number of unlabeled series-reduced rooted trees with n nodes where the non-leaf branches directly under any given node are all equal.

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 6, 9, 16, 26, 44, 70, 119, 189, 314, 506, 830, 1336, 2186, 3522, 5737, 9266, 15047, 24313, 39444, 63759, 103322, 167098, 270616, 437714, 708676, 1146390, 1855582, 3002017, 4858429, 7860454, 12720310, 20580764, 33303260, 53884144, 87190964
Offset: 1

Views

Author

Gus Wiseman, Oct 08 2018

Keywords

Comments

This is a weaker condition than achirality (cf. A167865).
A rooted tree is series-reduced if every non-leaf node has at least two branches.

Examples

			The a(3) = 1 through a(8) = 9 rooted trees:
  (oo)  (ooo)  (oooo)   (ooooo)   (oooooo)    (ooooooo)
               (o(oo))  (o(ooo))  (o(oooo))   (o(ooooo))
                        (oo(oo))  (oo(ooo))   (oo(oooo))
                                  (ooo(oo))   (ooo(ooo))
                                  ((oo)(oo))  (oooo(oo))
                                  (o(o(oo)))  (o(o(ooo)))
                                              (o(oo)(oo))
                                              (o(oo(oo)))
                                              (oo(o(oo)))
		

Crossrefs

Programs

  • Mathematica
    saum[n_]:=Sum[If[DeleteCases[ptn,1]=={},1,saum[DeleteCases[ptn,1][[1]]]],{ptn,Select[IntegerPartitions[n-1],And[Length[#]!=1,SameQ@@DeleteCases[#,1]]&]}];
    Array[saum,20]
  • PARI
    seq(n)={my(v=vector(n)); v[1]=1; for(n=3, n, v[n] = 1 + sum(k=2, n-2, (n-1)\k*v[k])); v} \\ Andrew Howroyd, Oct 26 2018

Formula

a(1) = 1; a(2) = 0; a(n > 2) = 1 + Sum_{k = 2..n-2} floor((n-1)/k) * a(k).
Previous Showing 21-30 of 78 results. Next