A047677
Row 2 of square array defined in A047675: 2*n!*(n+1)!.
Original entry on oeis.org
2, 4, 24, 288, 5760, 172800, 7257600, 406425600, 29262643200, 2633637888000, 289700167680000, 38240422133760000, 5965505852866560000, 1085722065221713920000, 228001633696559923200000, 54720392087174381568000000, 14883946647711431786496000000
Offset: 0
-
a:= proc(n) a(n):= `if`(n=0, 2, n*(n+1) * a(n-1)) end:
seq(a(n), n=0..20); # Alois P. Heinz, Nov 11 2013
-
2*Times@@@Partition[Range[0,20]!,2,1] (* Harvey P. Dale, Sep 25 2017 *)
A129274
Triangle, read by rows, where T(n,k) is the coefficient of q^(nk+k) in the squared q-factorial of n+1.
Original entry on oeis.org
1, 1, 1, 1, 10, 1, 1, 71, 71, 1, 1, 474, 1930, 474, 1, 1, 3103, 40096, 40096, 3103, 1, 1, 20190, 739929, 2108560, 739929, 20190, 1, 1, 131204, 12836959, 88638236, 88638236, 12836959, 131204, 1, 1, 853176, 215022825, 3286786158, 7625997280
Offset: 0
Definition of q-factorial of n:
faq(n,q) = Product_{k=1..n} (1-q^k)/(1-q) for n>0, with faq(0,q)=1.
Obtain row 3 from coefficients in the squared q-factorial of 4:
faq(4,q)^2 = 1*(1 + q)^2*(1 + q + q^2)^2*(1 + q + q^2 + q^3)^2
= (1 + 3*q + 5*q^2 + 6*q^3 + 5*q^4 + 3*q^5 + q^6)^2;
the resulting coefficients of q are:
[(1), 6, 19, 42, (71), 96, 106, 96, (71), 42, 19, 6, (1)],
where the terms enclosed in parenthesis form row 3.
Triangle begins:
1;
1, 1;
1, 10, 1;
1, 71, 71, 1;
1, 474, 1930, 474, 1;
1, 3103, 40096, 40096, 3103, 1;
1, 20190, 739929, 2108560, 739929, 20190, 1;
1, 131204, 12836959, 88638236, 88638236, 12836959, 131204, 1;
1, 853176, 215022825, 3286786158, 7625997280, 3286786158, 215022825, 853176, 1; ...
-
T(n,k)=polcoeff(prod(i=1,n+1,(1-x^i)/(1-x))^2,(n+1)*k)
A172286
Numbers of circuits of length 2n in K_{n,n} (the complete bipartite graph on 2n vertices).
Original entry on oeis.org
2, 32, 1458, 131072, 19531250, 4353564672, 1356446145698, 562949953421312, 300189270593998242, 200000000000000000000, 162805498773679522226642, 158993694406781688266883072, 183466660386537233316799232018
Offset: 1
Thibaut Lienart (syncthib(AT)gmail.com), Jan 30 2010
a(2) = 32 because there are 32 circuits of length 4 in the complete bipartite graph K2,2.
-
nmax = 10;
for k=1:nmax
an = 2*k^(2*k);
fprintf('%3.0f ', an);
end
-
a(n)=2*n^(2*n); \\ Andrew Howroyd, Sep 05 2018
A176037
a(n) = n!*(n+1)!*(n+2)!.
Original entry on oeis.org
2, 12, 288, 17280, 2073600, 435456000, 146313216000, 73741860864000, 53094139822080000, 52563198423859200000, 69383421919494144000000, 119061952013851951104000000, 260031303198252661211136000000, 709885457731229765106401280000000, 2385215137976932010757508300800000000
Offset: 0
a(2) = (2)!*(2+1)!*(2+2)! = (2)!*(3)!*(4)! = 2*6*24 = 288.
A334174
Numbers that can be written as a product of two or more consecutive factorial numbers.
Original entry on oeis.org
1, 2, 12, 144, 288, 2880, 17280, 34560, 86400, 2073600, 3628800, 12441600, 24883200, 203212800, 435456000, 10450944000, 14631321600, 62705664000, 125411328000, 146313216000, 1316818944000, 17557585920000, 73741860864000, 144850083840000, 421382062080000
Offset: 1
1 = 0! * 1!;
2 = 1! * 2!;
12 = 2! * 3!;
144 = 3! * 4!;
288 = 2! * 3! * 4!.
A368433
a(n) is the number of reduced instances in the stable marriage problem of order n that generate the maximum possible number of stable matchings.
Original entry on oeis.org
1, 1, 91, 1, 176130
Offset: 1
A371767
Triangle read by rows: T(n, k) = (k! * n!)/(n - k)!.
Original entry on oeis.org
1, 1, 1, 1, 2, 4, 1, 3, 12, 36, 1, 4, 24, 144, 576, 1, 5, 40, 360, 2880, 14400, 1, 6, 60, 720, 8640, 86400, 518400, 1, 7, 84, 1260, 20160, 302400, 3628800, 25401600, 1, 8, 112, 2016, 40320, 806400, 14515200, 203212800, 1625702400
Offset: 0
Triangle starts:
[0] 1;
[1] 1, 1;
[2] 1, 2, 4;
[3] 1, 3, 12, 36;
[4] 1, 4, 24, 144, 576;
[5] 1, 5, 40, 360, 2880, 14400;
[6] 1, 6, 60, 720, 8640, 86400, 518400;
[7] 1, 7, 84, 1260, 20160, 302400, 3628800, 25401600;
A016065
a(n) = Sum_{k=0..n} k!*(k+1)!.
Original entry on oeis.org
1, 3, 15, 159, 3039, 89439, 3718239, 206931039, 14838252639, 1331657196639, 146181741036639, 19266392807916639, 3002019319241196639, 545863051930098156639, 114546679900210059756639, 27474742723487400843756639, 7469448066579203294091756639, 2284713285166428266627979756639
Offset: 0
-
[&+[ Factorial(k)*Factorial(k+1): k in [0..n]]: n in [0..18]]; // Vincenzo Librandi, Jan 02 2019
-
Table[Sum[k! (k+1)!, {k, 0, n}], {n, 0, 20}] (* Vincenzo Librandi, Jan 02 2019 *)
-
a(n) = sum(k=0, n, k!*(k+1)!); \\ Michel Marcus, Jan 02 2019
A069135
a(n) = (n!*(n+1)!)^2.
Original entry on oeis.org
1, 4, 144, 20736, 8294400, 7464960000, 13168189440000, 41295442083840000, 214075571762626560000, 1734012131277275136000000, 20981546788455029145600000000, 365582471242040427832934400000000, 8896815020146295851742291558400000000, 294698100727325903793111665580441600000000
Offset: 0
Rebecca Gladu (rgladu(AT)eve.assumption.edu), Apr 07 2002
-
Table[(n!(n + 1)!)^2, {n, 1, 10}]
-
a(n) = (n!*(n+1)!)^2; \\ Michel Marcus, Jan 15 2023
A176038
Primes of the form k!*(k+1)! - 1 or k!*(k+1)! + 1.
Original entry on oeis.org
2, 3, 11, 13, 2879, 86399, 114000816848279961600001, 2284848632399058501374484565150666260597460935294482959564800000000000001
Offset: 1
a(6) = 86399 because 5!*(5+1)! - 1 = 86399 is prime. a(7) = 114000816848279961600001 because 14!*(14+1)! + 1 = 114000816848279961600001 is prime.
Comments