cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 50 results. Next

A047677 Row 2 of square array defined in A047675: 2*n!*(n+1)!.

Original entry on oeis.org

2, 4, 24, 288, 5760, 172800, 7257600, 406425600, 29262643200, 2633637888000, 289700167680000, 38240422133760000, 5965505852866560000, 1085722065221713920000, 228001633696559923200000, 54720392087174381568000000, 14883946647711431786496000000
Offset: 0

Views

Author

Keywords

Comments

a(n) = A152877(2n+1, 2n-2) for n > 0. - Alois P. Heinz, Nov 10 2013

Crossrefs

Programs

  • Maple
    a:= proc(n) a(n):= `if`(n=0, 2, n*(n+1) * a(n-1)) end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Nov 11 2013
  • Mathematica
    2*Times@@@Partition[Range[0,20]!,2,1] (* Harvey P. Dale, Sep 25 2017 *)

A129274 Triangle, read by rows, where T(n,k) is the coefficient of q^(nk+k) in the squared q-factorial of n+1.

Original entry on oeis.org

1, 1, 1, 1, 10, 1, 1, 71, 71, 1, 1, 474, 1930, 474, 1, 1, 3103, 40096, 40096, 3103, 1, 1, 20190, 739929, 2108560, 739929, 20190, 1, 1, 131204, 12836959, 88638236, 88638236, 12836959, 131204, 1, 1, 853176, 215022825, 3286786158, 7625997280
Offset: 0

Views

Author

Paul D. Hanna, Apr 07 2007

Keywords

Comments

Row sums equal A010790(n) = n!*(n+1)! for n>=0. Central terms form a bisection of A127728. Dual triangle is A129276.

Examples

			Definition of q-factorial of n:
faq(n,q) = Product_{k=1..n} (1-q^k)/(1-q) for n>0, with faq(0,q)=1.
Obtain row 3 from coefficients in the squared q-factorial of 4:
faq(4,q)^2 = 1*(1 + q)^2*(1 + q + q^2)^2*(1 + q + q^2 + q^3)^2
= (1 + 3*q + 5*q^2 + 6*q^3 + 5*q^4 + 3*q^5 + q^6)^2;
the resulting coefficients of q are:
[(1), 6, 19, 42, (71), 96, 106, 96, (71), 42, 19, 6, (1)],
where the terms enclosed in parenthesis form row 3.
Triangle begins:
1;
1, 1;
1, 10, 1;
1, 71, 71, 1;
1, 474, 1930, 474, 1;
1, 3103, 40096, 40096, 3103, 1;
1, 20190, 739929, 2108560, 739929, 20190, 1;
1, 131204, 12836959, 88638236, 88638236, 12836959, 131204, 1;
1, 853176, 215022825, 3286786158, 7625997280, 3286786158, 215022825, 853176, 1; ...
		

Crossrefs

Cf. A129275 (column 1); A127728 (central terms), A010790 (row sums); related triangles: A129276, A128564, A008302 (Mahonian numbers).

Programs

  • PARI
    T(n,k)=polcoeff(prod(i=1,n+1,(1-x^i)/(1-x))^2,(n+1)*k)

Formula

T(n,k) = [q^(nk+k)] Product_{i=1..n+1} { (1-q^i)/(1-q) }^2.

A172286 Numbers of circuits of length 2n in K_{n,n} (the complete bipartite graph on 2n vertices).

Original entry on oeis.org

2, 32, 1458, 131072, 19531250, 4353564672, 1356446145698, 562949953421312, 300189270593998242, 200000000000000000000, 162805498773679522226642, 158993694406781688266883072, 183466660386537233316799232018
Offset: 1

Views

Author

Thibaut Lienart (syncthib(AT)gmail.com), Jan 30 2010

Keywords

Comments

Circuits are allowed to be self-intersecting and are directional with a designated start node. The number of (self-avoiding) directed cycles is given by A010790. - Andrew Howroyd, Sep 05 2018

Examples

			a(2) = 32 because there are 32 circuits of length 4 in the complete bipartite graph K2,2.
		

Crossrefs

Programs

  • MATLAB
    nmax = 10;
    for k=1:nmax
    an = 2*k^(2*k);
    fprintf('%3.0f ', an);
    end
    
  • PARI
    a(n)=2*n^(2*n); \\ Andrew Howroyd, Sep 05 2018

Formula

a(n) = 2*n^(2*n).

Extensions

More terms from Max Alekseyev, Jan 18 2012

A176037 a(n) = n!*(n+1)!*(n+2)!.

Original entry on oeis.org

2, 12, 288, 17280, 2073600, 435456000, 146313216000, 73741860864000, 53094139822080000, 52563198423859200000, 69383421919494144000000, 119061952013851951104000000, 260031303198252661211136000000, 709885457731229765106401280000000, 2385215137976932010757508300800000000
Offset: 0

Views

Author

Jonathan Vos Post, Apr 07 2010

Keywords

Examples

			a(2) = (2)!*(2+1)!*(2+2)! = (2)!*(3)!*(4)! = 2*6*24 = 288.
		

Crossrefs

Programs

  • Mathematica
    Times@@@Partition[Range[0,15]!,3,1] (* Harvey P. Dale, Aug 29 2012 *)

Formula

a(n) = A000142(n)*A000142(n+1)*A000142(n+2) = A010790(n)*A000142(n+2).
a(n) = 2*A090443(n). - Pontus von Brömssen, Jun 14 2024

A334174 Numbers that can be written as a product of two or more consecutive factorial numbers.

Original entry on oeis.org

1, 2, 12, 144, 288, 2880, 17280, 34560, 86400, 2073600, 3628800, 12441600, 24883200, 203212800, 435456000, 10450944000, 14631321600, 62705664000, 125411328000, 146313216000, 1316818944000, 17557585920000, 73741860864000, 144850083840000, 421382062080000
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 17 2020

Keywords

Examples

			    1 = 0! * 1!;
    2 = 1! * 2!;
   12 = 2! * 3!;
  144 = 3! * 4!;
  288 = 2! * 3! * 4!.
		

Crossrefs

A368433 a(n) is the number of reduced instances in the stable marriage problem of order n that generate the maximum possible number of stable matchings.

Original entry on oeis.org

1, 1, 91, 1, 176130
Offset: 1

Views

Author

Dan Eilers, Dec 24 2023

Keywords

Comments

Reduced instances (A351409) are fewer than all instances by a factor of n!(n-1)! due to participant-renaming isomorphism, analogous to reduced latin squares.
For n in [1,2,4], a(n) = 1 showing uniqueness up to isomorphism.

Crossrefs

Cf. A344669 (unreduced), A351430 (order 4), A368419 (order 5), A351409 (total reduced instances), A010790 (reduction factor offset by 1).

Formula

a(n) = A344669(n) / A010790(n-1).
a(4) = A351430(10).
a(5) = A368419(0).

A371767 Triangle read by rows: T(n, k) = (k! * n!)/(n - k)!.

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 1, 3, 12, 36, 1, 4, 24, 144, 576, 1, 5, 40, 360, 2880, 14400, 1, 6, 60, 720, 8640, 86400, 518400, 1, 7, 84, 1260, 20160, 302400, 3628800, 25401600, 1, 8, 112, 2016, 40320, 806400, 14515200, 203212800, 1625702400
Offset: 0

Views

Author

Peter Luschny, Apr 14 2024

Keywords

Examples

			Triangle starts:
  [0] 1;
  [1] 1, 1;
  [2] 1, 2,  4;
  [3] 1, 3, 12,   36;
  [4] 1, 4, 24,  144,   576;
  [5] 1, 5, 40,  360,  2880,  14400;
  [6] 1, 6, 60,  720,  8640,  86400,  518400;
  [7] 1, 7, 84, 1260, 20160, 302400, 3628800, 25401600;
		

Crossrefs

Cf. A000142, A001044 (main diagonal), A010790 (subdiagonal), A046662 (row sums), A089041 (alternating row sums), A010050 (central terms).

Programs

  • Maple
    T := (n, k) -> (k! * n!)/(n - k)!:
    for n from 0 to 6 do seq(T(n, k), k = 0..n) od;

A016065 a(n) = Sum_{k=0..n} k!*(k+1)!.

Original entry on oeis.org

1, 3, 15, 159, 3039, 89439, 3718239, 206931039, 14838252639, 1331657196639, 146181741036639, 19266392807916639, 3002019319241196639, 545863051930098156639, 114546679900210059756639, 27474742723487400843756639, 7469448066579203294091756639, 2284713285166428266627979756639
Offset: 0

Views

Author

Keywords

Comments

Partial sums of A010790. - Sean A. Irvine, Jan 02 2019

Crossrefs

Cf. A010790.

Programs

  • Magma
    [&+[ Factorial(k)*Factorial(k+1): k in [0..n]]: n in [0..18]]; // Vincenzo Librandi, Jan 02 2019
  • Mathematica
    Table[Sum[k! (k+1)!, {k, 0, n}], {n, 0, 20}] (* Vincenzo Librandi, Jan 02 2019 *)
  • PARI
    a(n) = sum(k=0, n, k!*(k+1)!); \\ Michel Marcus, Jan 02 2019
    

Extensions

More terms from Vincenzo Librandi, Jan 02 2019

A069135 a(n) = (n!*(n+1)!)^2.

Original entry on oeis.org

1, 4, 144, 20736, 8294400, 7464960000, 13168189440000, 41295442083840000, 214075571762626560000, 1734012131277275136000000, 20981546788455029145600000000, 365582471242040427832934400000000, 8896815020146295851742291558400000000, 294698100727325903793111665580441600000000
Offset: 0

Views

Author

Rebecca Gladu (rgladu(AT)eve.assumption.edu), Apr 07 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n!(n + 1)!)^2, {n, 1, 10}]
  • PARI
    a(n) = (n!*(n+1)!)^2; \\ Michel Marcus, Jan 15 2023

Formula

a(n) = det(PS(i+2,j), 1 <= i,j <= n), where PS(n,k) are Legendre-Stirling numbers of the second kind (A071951) [Mircea Merca, Apr 04 2013]
a(n) = A010790(n)^2. - Michel Marcus, Jan 15 2023

Extensions

Edited and extended by Robert G. Wilson v, Apr 08 2002
More terms from Michel Marcus, Jan 15 2023

A176038 Primes of the form k!*(k+1)! - 1 or k!*(k+1)! + 1.

Original entry on oeis.org

2, 3, 11, 13, 2879, 86399, 114000816848279961600001, 2284848632399058501374484565150666260597460935294482959564800000000000001
Offset: 1

Views

Author

Jonathan Vos Post, Apr 07 2010

Keywords

Comments

Primes of the form A010790(k)-1 or A010790(k)+1. This is the 2nd sequence in the supersequence whose first member is factorial primes, A002981 UNION A002982. No more through 20!*(20+1)! + 1.
a(9) has already 225 digits. The terms are generated by n= 0,1,2,2,4,5,14,32,76,166... [From R. J. Mathar, Aug 31 2010]

Examples

			a(6) = 86399 because 5!*(5+1)! - 1 = 86399 is prime. a(7) = 114000816848279961600001 because 14!*(14+1)! + 1 = 114000816848279961600001 is prime.
		

Crossrefs

Formula

[{A010790(n)-1} INTERSECTION A000040] UNION [{A010790(n)+1} INTERSECTION A000040].

Extensions

One more term from R. J. Mathar, Aug 31 2010
Previous Showing 31-40 of 50 results. Next