cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 58 results. Next

A318777 Coefficients in expansion of 1/(1 - x - 2*x^5).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 5, 7, 9, 11, 17, 27, 41, 59, 81, 115, 169, 251, 369, 531, 761, 1099, 1601, 2339, 3401, 4923, 7121, 10323, 15001, 21803, 31649, 45891, 66537, 96539, 140145, 203443, 295225, 428299, 621377, 901667, 1308553, 1899003, 2755601, 3998355, 5801689, 8418795
Offset: 0

Views

Author

Zagros Lalo, Sep 25 2018

Keywords

Comments

The coefficients in the expansion of 1/(1 - x - 2*x^5) are given by the sequence generated by the row sums in triangle A318775.
Coefficients in expansion of 1/(1 - x - 2*x^5) are given by the sum of numbers along "fourth Layer" skew diagonals pointing top-right in triangle A013609 ((1+2x)^n) and by the sum of numbers along "fourth Layer" skew diagonals pointing top-left in triangle A038207 ((2+x)^n), see links.

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3.

Crossrefs

Essentially a duplicate of A143447.

Programs

  • GAP
    a:=[1,1,1,1,1,3];; for n in [7..50] do a[n]:=a[n-1]+2*a[n-5]; od; a; # Muniru A Asiru, Sep 26 2018
  • Maple
    seq(coeff(series((1-x-2*x^5)^(-1),x,n+1), x, n), n = 0 .. 50); # Muniru A Asiru, Sep 26 2018
  • Mathematica
    a[0] = 1; a[n_] := a[n] = If[n < 0, 0, a[n - 1] + 2 * a[n - 5]];Table[a[n], {n, 0, 45}] // Flatten
    LinearRecurrence[{1, 0, 0, 0, 2}, {1, 1, 1, 1, 1}, 46]
    CoefficientList[Series[1/(1 - x - 2 x^5), {x, 0, 45}], x]

Formula

a(0)=1, a(n) = a(n-1) + 2 * a(n-5) for n = 0,1...; a(n)=0 for n < 0.
G.f.: -1/(2*x^5 + x - 1). - Chai Wah Wu, Aug 03 2020

A377336 Square array read by antidiagonals: T(n,k) is the number of fully symmetric, k-celled, n-dimensional polyhypercubes; n >= 0, k >= 1.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Pontus von Brömssen, Oct 25 2024

Keywords

Comments

To be included, a polyhypercube should have all the 2^n*n! symmetries of the n-dimensional hypercube.
Let n >= 1 and m = A171977(n). Then T(n,k) = 0 if neither k nor k-1 is a multiple of m. Also, there exists a number K such that T(n,k) > 0 if k >= K and either k or k-1 is a multiple of m. In particular, T(n,k) > 0 for all sufficiently large k if and only if n is odd. Sketch of proof: Assume that the point of rotation of the symmetries is in the origin and that the center of each cell have integer or half-integer coordinates, depending on whether the point of rotation is in the center of a cell or at the common corner of 2^n cells. The number of cells that are equivalent to a given cell c is n!/(x_0!*x_1!*...)*2^(n-x_0), where x_1, x_2, ... are the frequencies of the absolute values of the nonzero coordinates of c and x_0 is the number of zero coordinates of c. It can be proved that this number is divisible by m unless c is the cell at the origin (in which case x_0 = n and there are no other equivalent cells). (It is sufficient to check the case where all nonzero coordinates have the same absolute value, i.e., that all numbers except 1 in the n-th row of A013609 are divisible by m; the other numbers are multiples of these.) Since either none or all of the cells equivalent to a given cell must be part of the polyhypercube, this proves the first part. For the second part, say that a cell where the absolute values of all coordinates are equal and nonzero is a corner cell, and that a cell with a single nonzero coordinate is a spike cell. Corner cells and spike cells come in sets of 2^n and 2*n equivalent cells, respectively, and the GCD of 2^n and 2*n is already equal to m. Assume that n >= 3 (the case n <= 2 is easily handled), that k >= (4*n-1)^n, and that either k or k-1 is a multiple of m. Start with a solid cube made up of (4*n-1)^n cells. Remove the central cell if k is even, so that the number of remaining cells is congruent to k (mod m). Since GCD(2^n,2*n) = m, we can remove at most 2*n-1 sets of 2^n equivalent corner cells each, until the number of remaining cells is congruent to k (mod 2*n). The resulting polyhypercube is still connected. Then add sets of 2*n spike cells until the total number of cells is equal to k. This proves the second part. The bound k >= (4*n-1)^n resulting from this construction is far from optimal.

Examples

			Array begins:
  n\k| 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
  ---+-----------------------------------------------------------
   0 | 1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
   1 | 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
   2 | 1  0  0  1  1  0  0  1  2  0  0  3  2  0  0  5  4  0  0 12
   3 | 1  0  0  0  0  0  1  1  0  0  0  0  1  0  0  0  0  1  2  1
   4 | 1  0  0  0  0  0  0  0  1  0  0  0  0  0  0  1  1  0  0  0
   5 | 1  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0
   6 | 1  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0
   7 | 1  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0
   8 | 1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0
   9 | 1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0
  10 | 1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
		

Crossrefs

Cf. A013609, A142886 (2nd row), A171977, A330891, A376791 (3rd row).

A120909 Triangle read by rows: T(n,k) is the number of ternary words of length n having k runs (i.e., subwords of maximal length) of identical letters (1 <= k <= n).

Original entry on oeis.org

3, 3, 6, 3, 12, 12, 3, 18, 36, 24, 3, 24, 72, 96, 48, 3, 30, 120, 240, 240, 96, 3, 36, 180, 480, 720, 576, 192, 3, 42, 252, 840, 1680, 2016, 1344, 384, 3, 48, 336, 1344, 3360, 5376, 5376, 3072, 768, 3, 54, 432, 2016, 6048, 12096, 16128, 13824, 6912, 1536, 3, 60
Offset: 1

Views

Author

Emeric Deutsch, Jul 15 2006

Keywords

Comments

Row sums are the powers of 3 (A000244).

Examples

			T(3,2)=12 because we have 001,002,011,022,100,110,112,122,200,211,220 and 221.
Triangle starts:
  3;
  3,  6;
  3, 12, 12;
  3, 18, 36, 24;
  3, 24, 72, 96, 48;
		

Crossrefs

Programs

  • Maple
    T:=(n,k)->3*2^(k-1)*binomial(n-1,k-1): for n from 1 to 11 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form
  • Mathematica
    nn=15;f[list_]:=Select[list,#>0&];a=y x/(1-x) +1;b=a^2/(1-(a-1)^2 );Drop[Map[f,CoefficientList[Series[b a/(1-(a-1)(b-1)),{x,0,nn}],{x,y}]],1]//Grid  (* Geoffrey Critzer, Nov 20 2012 *)

Formula

T(n,k) = 3*2^(k-1)*binomial(n-1,k-1).
G(t,z) = 3*t*z/(1-z-2*t*z).
T(n,k) = 3*A013609(n-1,k-1).
T(n,k) = A120910(n,n-k).
Sum_{k>=1} k*T(n,k) = 3*A081038(n-1).

A123187 Triangle of coefficients in expansion of (1+13x)^n.

Original entry on oeis.org

1, 1, 13, 1, 26, 169, 1, 39, 507, 2197, 1, 52, 1014, 8788, 28561, 1, 65, 1690, 21970, 142805, 371293, 1, 78, 2535, 43940, 428415, 2227758, 4826809, 1, 91, 3549, 76895, 999635, 7797153, 33787663, 62748517, 1, 104, 4732, 123032, 1999270, 20792408
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Oct 03 2006

Keywords

Comments

T(n,k) equals the number of n-length words on {0,1,...,13} having n-k zeros. - Milan Janjic, Jul 24 2015

Examples

			1
1, 13
1, 26, 169
1, 39, 507, 2197
1, 52, 1014, 8788, 28561
1, 65, 1690, 21970, 142805, 371293
		

Crossrefs

Programs

  • Maple
    T:= n-> (p-> seq(coeff(p, x, k), k=0..n))((1+13*x)^n):
    seq(T(n), n=0..10);  # Alois P. Heinz, Jul 24 2015
  • Mathematica
    p[0, x] = 1; p[1, x] = 13*x + 1; p[k_, x_] := p[k, x] = (13*x + 1)*p[k - 1, x]; w = Table[CoefficientList[p[n, x], x], {n, 0, 10}]; Flatten[w]

Formula

p(k, x) = (13*x + 1)*p(k - 1, x).
T(n,k) = 13^k*C(n,k) = Sum_{i=n-k..n} C(i,n-k)*C(n,i)*12^(n-i). Row sums are 14^n = A001023. G.f.: 1 / [1 - x(1+13y)]. - Mircea Merca, Apr 28 2012

A167786 Triangle of z Transform coefficients from General Pascal [1,8,1} A142458 polynomials multiplied by factor 3^Floor[(2*k - 1)/3].

Original entry on oeis.org

0, 3, 3, 6, 9, 45, 45, 27, 234, 540, 360, 27, 315, 1305, 1980, 990, 81, 1026, 6750, 18360, 20790, 8316, 243, 3807, 26379, 115830, 234630, 212058, 70686, 243, 7938, 37800, 177660, 582120, 939708, 706860, 201960, 729, 26001, 280827, 873180, 3087315
Offset: 0

Views

Author

Roger L. Bagula, Nov 12 2009

Keywords

Comments

Row sums are:
{0, 3, 9, 99, 1161, 4617, 55323, 663633, 2654289, 31850739, 382206681...}
These are a sequence of Infinite sums that give A142458.
Even terms are factored by (1+2*n) which is the MacMahon (1+2*n)^k,but the polynomials seem fundamental
other than that.
A060187 MacMahon gives A013609 Triangle of coefficients in expansion of (1 + 2x)^n.
I looked for a simple infinite sum for the {1,8,1} and failed.
This reasoning comes from finding that the general z Transform polynomials are
related to the Eulerian: in fact this type of Eulerian polynomials A008292 gives (1+n)^k binomial.
The polynomials given here form a set of infinite sum sequences.

Examples

			{0},
{3},
{3, 6},
{9, 45, 45},
{27, 234, 540, 360},
{27, 315, 1305, 1980, 990},
{81, 1026, 6750, 18360, 20790, 8316},
{243, 3807, 26379, 115830, 234630, 212058, 70686},
{243, 7938, 37800, 177660, 582120, 939708, 706860, 201960},
{729, 26001, 280827, 873180, 3087315, 8058204, 10814958, 6967620, 1741905},
{2187, -308610, 1076490, 7334820, 17120565, 48411594, 104968710, 120570120, 67934295, 15096510}
		

Crossrefs

Programs

  • Mathematica
    m = 3 A[n_, 1] := 1 A[n_, n_] := 1
    A[n_, k_] := (m*n - m*k + 1)A[n - 1, k - 1] + (m*k - (m - 1))A[n - 1, k]
    a = Table[A[n, k], {n, 10}, {k, n}]
    p[x_, n_] = x*Sum[a[[n, k]]*x^(k - 1), {k, 1, n}]/(x - 1)
    b = Table[p[x, n], {n, 0, 10}]
    Table[3^Floor[(2*k - 1)/3]*CoefficientList[ExpandAll[ InverseZTransform[b[[k]], x, n] /. UnitStep[ -1 + n] -> 1], n], {k, 1, Length[b]}]

Formula

m=3;
A(n,k)= (m*n - m*k + 1)A(n - 1, k - 1} + (m*k - (m - 1))A(n - 1, k)
q(n,k)=InverseZTransform[x*Sum[a[[n, k]]*x^(k - 1), {k, 1, n}]/(x - 1)^n, x, k]
out_n,k=3^Floor[(2*k - 1)/3]*coefficients(q[n,k])

A182059 Triangle, read by rows, given by (0, 2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (2, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 2, 0, 4, 4, 0, 6, 12, 8, 0, 8, 24, 32, 16, 0, 10, 40, 80, 80, 32, 0, 12, 60, 160, 240, 192, 64, 0, 14, 84, 280, 560, 672, 448, 128, 0, 16, 112, 448, 1120, 1792, 1792, 1024, 256, 0, 18, 144, 672, 2016, 4032, 5376, 4608, 2304, 512
Offset: 0

Views

Author

Philippe Deléham, Apr 09 2012

Keywords

Comments

Row sums are 3^n - 1 + 0^n.
Triangle of coefficients in expansion of (1+2*x)^n - 1 + 0^n .

Examples

			Triangle begins :
1
0, 2
0, 4, 4
0, 6, 12, 8
0, 8, 24, 32, 16
0, 10, 40, 80, 80, 32
0, 12, 60, 160, 240, 192, 64
0, 14, 84, 280, 560, 672, 448, 128
0, 16, 112, 448, 1120, 1792, 1792, 1024, 256
0, 18, 144, 672, 2016, 4032, 5376, 4608, 2304, 512
0, 20, 180, 960, 3360, 8064, 13440, 15360, 11520, 5120, 1024
		

Crossrefs

Formula

G.f.: (1-2*x+x^2+2*y*x^2)/(1-2*x-2*y*x+x^2+2*y*x^2).
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k) - 2*T(n-2,k-1), T(0,0) = 1, T(1,0) = T(2,0) = 0, T(1,1) = 2, T(2,1) = T(2,2) = 4 and T(n,k) = 0 if k<0 or if k>n.
T(n,k) = A206735(n,k)*2^k.
T(n,k) = A013609(n,k) - A073424(n,k) .

A185342 Triangle of successive recurrences in columns of A117317(n).

Original entry on oeis.org

2, 4, -4, 6, -12, 8, 8, -24, 32, -16, 10, -40, 80, -80, 32, 12, -60, 160, -240, 192, -64, 14, -84, 280, -560, 672, -448, 128, 16, -112, 448, -1120, 1792, -1792, 1024, -256, 18, -144, 672, -2016, 4032, -5376, 4608, -2304, 512, 20, -180, 960, -3360, 8064
Offset: 0

Views

Author

Paul Curtz, Jan 26 2012

Keywords

Comments

A117317 (A):
1
2 1
4 5 1
8 16 9 1
16 44 41 14 1
32 112 146 85 20 1
64 272 456 377 155 27 1
have for their columns successive signatures
(2) (4,-4) (6,-12,8) (8,-24, 32, -16) (10,-40,80,-80,32) i.e. a(n).
Take based on abs(A133156) (B):
1
2 0
4 1 0
8 4 0 0
16 12 1 0 0
32 32 6 0 0 0
64 80 24 1 0 0 0.
The recurrences of successive columns are also a(n). a(n) columns: A005843(n+1), A046092(n+1), A130809, A130810, A130811, A130812, A130813.

Examples

			Triangle T(n,k),for 1<=k<=n, begins :
2                                         (1)
4    -4                                   (2)
6   -12   8                               (3)
8   -24  32   -16                         (4)
10  -40  80   -80   32                    (5)
12  -60 160  -240  192   -64              (6)
14  -84 280  -560  672  -448  128         (7)
16 -112 448 -1120 1792 -1792 1024 -256    (8)
Successive rows can be divided by A171977.
		

Crossrefs

Cf. For (A): A053220, A056243. For (B): A000079, A001787, A001788, A001789. For A193862: A115068 (a Coxeter group). For (2): A014480 (also (3),(4),(5),..); also A053220 and A001787.
Cf. A007318.

Programs

  • Mathematica
    Table[(-1)*Binomial[n, k]*(-2)^k, {n, 1, 20}, {k, 1, n}] // Flatten (* G. C. Greubel, Jun 27 2017 *)
  • PARI
    for(n=1,20, for(k=1,n, print1((-2)^(k+1)*binomial(n,k)/2, ", "))) \\ G. C. Greubel, Jun 27 2017

Formula

Take A133156(n) without 1's or -1's double triangle (C)=
2
4
8 -4
16 -12
32 -32 6
64 -80 24
128 -192 80 -8
256 -448 240 -40
512 -1024 672 -160 10;
a(n) is increasing odd diagonals and increasing (sign changed) even diagonals. Rows sum of (C) = A201629 (?) Another link between Chebyshev polynomials and cos( ).
Absolute values: A013609(n) without 1's. Also 2*A193862 = (2*A002260)*A135278.
T(n,k) = T(n-1,k) - 2*T(n-1,k-1) for k>1, T(n,1) = 2*n = 2*T(n-1,1) - T(n-2,1). - Philippe Deléham, Feb 11 2012
T(n,k) = (-1)* Binomial(n,k)*(-2)^k, 1<=k<=n. - Philippe Deléham, Feb 11 2012

A230445 Triangle read by rows: T(n,m) = 3^m*2^(n-m)-1, the number of neighbors in an n-dimensional cubic array.

Original entry on oeis.org

0, 1, 2, 3, 5, 8, 7, 11, 17, 26, 15, 23, 35, 53, 80, 31, 47, 71, 107, 161, 242, 63, 95, 143, 215, 323, 485, 728, 127, 191, 287, 431, 647, 971, 1457, 2186, 255, 383, 575, 863, 1295, 1943, 2915, 4373, 6560, 511, 767, 1151, 1727, 2591, 3887, 5831, 8747, 13121
Offset: 0

Views

Author

Ron R. King, Oct 18 2013

Keywords

Comments

Let n be the dimension of the cubic array.
Let m be the "placement depth" of the cell within the array. m = (number of horizontal or vertical neighbors)-n. 0 <= m <= n.
Let T(n,m) represent the number of neighbors (horizontally, vertically, or diagonally) a cell has in an n-dimensional cube that has at least 3^n cells.
The sequence forms a triangle structure similar to Pascal’s triangle: T(0,0) in row one, T(1,0), T(1,1) in row two, etc.
The triangle in A094615 is a subtriangle. - Philippe Deléham, Oct 31 2013
In a finite n-dimensional hypercube lattice, the sequence gives the number of nodes situated at a Chebyshev distance of 1 for a node, situated on an m-cube bound, which is not on an (m-1)-cube bound. The number of m-cube bounds for n-cube is given by A013609. In cellular automata theory, the cell surrounding with Chebyshev distance 1 is called Moore's neighborhood. For von Neumann neighborhood (with Manhattan distance 1), an analogous sequence is represented by A051162. - Dmitry Zaitsev, Oct 22 2015

Examples

			Triangle starts:
n \ m  0    1    2    3    4    5     6     7     8     9    10 ...
0:     0
1:     1    2
2:     3    5    8
3:     7   11   17   26
4:    15   23   35   53   80
5:    31   47   71  107  161  242
6:    63   95  143  215  323  485   728
7:   127  191  287  431  647  971  1457  2186
8:   255  383  575  863 1295 1943  2915  4373  6560
9:   511  767 1151 1727 2591 3887  5831  8747 13121 19682
10: 1023 1535 2303 3455 5183 7775 11663 17495 26243 39365 59048
... (reformatted (and extended) by _Wolfdieter Lang_, May 04 2022)
For a 3-d cube, at a corner, the number of horizontal and vertical neighbors is 3, hence m = 3-3 = 0.
Along the edge, the number of horizontal and vertical neighbors is 4, hence m = 4-3 = 1.
In a face, the number of horizontal and vertical neighbors is 5, hence m = 5-3 = 2.
In the interior, the number of horizontal and vertical neighbors is 6, hence m = 6-3 = 3.
T(3,2) = 17 because a cell on the face of a 3-d cube has 17 neighbors.
		

Crossrefs

Sequence numbers are 1 less than A036561.

Programs

  • C
    void a10(){int p3[10], p2[10], n, m, a; p3[0]=1; p2[0]=1;
    for(n=1;n<10;n++){ p2[n]=p2[n-1]*2; p3[n]=p3[n-1]*3;
      for(m=0;m<=d;m++){ a=p3[m]*p2[n-m]-1; printf("%d ",a); }
      printf("\n"); } } /* Dmitry Zaitsev, Oct 23 2015 */
  • Mathematica
    Table[3^m 2^(n - m) - 1, {n, 0, 9}, {m, 0, n}] // Flatten (* Michael De Vlieger, Oct 23 2015 *)

Formula

T(n,m) = 3^m*2^(n-m)-1, 0 <= m <= n.
T(n,0) = 2^n-1. (A000225)
T(n,n) = 3^n-1. (A024023)
T(n,m) = (3*T(n,m-1)+1)/2, first part of the Collatz sequence for the number 2^n-1, for n >= 1.
T(n,m) = (T(n-1,m) + T(n,m+1))/2, 0 <= m <= n-1.
T(n,m) = 1 + T(n-1,m-1) + T(n,m-1), 1 <= m <= n.
m = T2(n,k)-n, where T2(n,k) is A051162.
From Wolfdieter Lang, May 04 2022: (Start)
G.f. for column m: G(m, x) = x^m*(3^m - 1 - (3^m - 2)*x)/((1 - 2*x)*(1 - x)).
G.f. for row polynomials R(n, x) = Sum_{m=1..n} T(n, m)*x^m, for n >= 0: G(z, x) = z*(1 + (2 - 5*z)*x)/((1 - 2*z)*(1 - z)*(1 - 3*x*z)*(1 - x*z)).
(End)

A243019 Expansion of -(2*x*sqrt(1-8*x^2)-2*x) / (16*x^3+sqrt(1-8*x^2)*(4*x^2+2*x-1)-8*x^2-2*x+1).

Original entry on oeis.org

1, 1, 5, 7, 33, 51, 233, 379, 1697, 2851, 12585, 21627, 94449, 165075, 714873, 1266027, 5445441, 9746883, 41687369, 75275227, 320420753, 582881971, 2471008281, 4523575371, 19108837601, 35174066851
Offset: 0

Views

Author

Vladimir Kruchinin, May 29 2014

Keywords

Comments

Number of ternary strings of length n that have the same number or more 0's than the combined number of 1's and 2's. For example, a(4) = 33 since the strings are (number of permutations in parentheses): 0000 (1), 0001 (4), 0002 (4), 0011 (6), 0022 (6), 0012 (12). - Enrique Navarrete, Aug 14 2025

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-(2*x*Sqrt[1-8*x^2]-2*x)/(16*x^3+Sqrt[1-8*x^2]*(4*x^2+2*x-1)-8*x^2-2*x+1),{x,0,20}],x] (* Vaclav Kotesovec, May 29 2014 *)
  • Maxima
    a(n):=sum(2^(i)*binomial(n,i),i,0,floor((n)/2));

Formula

a(n) = sum(i=0..floor(n/2), 2^i*binomial(n,i)).
G.f.: (x*C'(2*x^2))/(C(2*x^2)*(1-x*C(2*x^2))), where C(x) is g.f. of A000108.
a(n) ~ 2^(3*n/2) * (2+sqrt(2) + (-1)^n*(2-sqrt(2))) / sqrt(2*Pi*n). - Vaclav Kotesovec, May 29 2014
D-finite with recurrence: n^2*a(n) = (3*n^2-4)*a(n-1) + 4*(2*n^2 - 2*n - 1)*a(n-2) - 24*(n-2)*(n+1)*a(n-3). - Vaclav Kotesovec, May 29 2014
a(n) = Sum_{k=0..floor(n/2)} A013609(n,k). - Enrique Navarrete, Aug 14 2025

A317500 Triangle read by rows: T(0,0) = 1; T(n,k) = T(n-1,k) + 2 * T(n-4,k-1) for k = 0..floor(n/4); T(n,k)=0 for n or k < 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 4, 1, 6, 1, 8, 1, 10, 4, 1, 12, 12, 1, 14, 24, 1, 16, 40, 1, 18, 60, 8, 1, 20, 84, 32, 1, 22, 112, 80, 1, 24, 144, 160, 1, 26, 180, 280, 16, 1, 28, 220, 448, 80, 1, 30, 264, 672, 240, 1, 32, 312, 960, 560, 1, 34, 364, 1320, 1120, 32
Offset: 0

Views

Author

Zagros Lalo, Sep 03 2018

Keywords

Comments

The numbers in rows of the triangle are along a "third layer" skew diagonals pointing top-right in center-justified triangle given in A013609 ((1+2*x)^n) and along a "third layer" skew diagonals pointing top-left in center-justified triangle given in A038207 ((2+x)^n), see links. (Note: First layer skew diagonals in center-justified triangles of coefficients in expansions of (1+2*x)^n and (2+x)^n are given in A128099 and A207538 respectively.)
The coefficients in the expansion of 1/(1-x-2*x^4) are given by the sequence generated by the row sums.
The row sums give A052942.
If s(n) is the row sum at n, then the ratio s(n)/s(n-1) is approximately 1.543689012692076... (A256099: Decimal expansion of the real root of a cubic used by Omar Khayyám in a geometrical problem), when n approaches infinity.

Examples

			Triangle begins:
  1;
  1;
  1;
  1;
  1,  2;
  1,  4;
  1,  6;
  1,  8;
  1, 10,   4;
  1, 12,  12;
  1, 14,  24;
  1, 16,  40;
  1, 18,  60,   8;
  1, 20,  84,  32;
  1, 22, 112,  80;
  1, 24, 144, 160;
  1, 26, 180, 280,  16;
  1, 28, 220, 448,  80;
  1, 30, 264, 672, 240;
...
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3.

Crossrefs

Row sums give A052942.

Programs

  • Mathematica
    t[n_, k_] := t[n, k] = 2^k/((n - 4 k)! k!) (n - 3 k)!; Table[t[n, k], {n, 0, 20}, {k, 0, Floor[n/4]} ] // Flatten
    t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, t[n - 1, k] + 2 t[n - 4, k - 1]]; Table[t[n, k], {n, 0, 20}, {k, 0, Floor[n/4]}] // Flatten

Formula

T(n,k) = 2^k / ((n - 4*k)! k!) * (n - 3*k)! where n >= 0 and 0 <= k <= floor(n/4).
Previous Showing 41-50 of 58 results. Next