cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 104 results. Next

A061398 Number of squarefree integers between prime(n) and prime(n+1).

Original entry on oeis.org

0, 0, 1, 1, 0, 2, 0, 2, 1, 1, 3, 2, 1, 1, 1, 3, 0, 3, 2, 0, 3, 1, 3, 4, 0, 1, 2, 0, 2, 6, 2, 2, 1, 5, 0, 2, 3, 2, 1, 3, 0, 6, 0, 2, 0, 7, 8, 1, 0, 2, 3, 0, 3, 3, 3, 3, 0, 2, 1, 1, 5, 7, 2, 0, 1, 9, 2, 4, 0, 0, 4, 3, 2, 2, 2, 2, 5, 2, 4, 6, 0, 5, 0, 4, 1, 3, 4, 1, 1, 2, 6, 4, 1, 4, 2, 2, 7, 0, 8, 4, 4, 3, 2, 1, 2
Offset: 1

Views

Author

Labos Elemer, Jun 07 2001

Keywords

Examples

			Between 113 and 127 the 6 squarefree numbers are 114, 115, 118, 119, 122, 123, so a(30)=6.
From _Gus Wiseman_, Nov 06 2024: (Start)
The a(n) squarefree numbers for n = 1..16:
  1   2   3   4   5   6   7   8   9   10  11  12  13  14  15  16
  ---------------------------------------------------------------
  .   .   6   10  .   14  .   21  26  30  33  38  42  46  51  55
                      15      22          34  39              57
                                          35                  58
(End)
		

Crossrefs

Cf. A179211. [Reinhard Zumkeller, Jul 05 2010]
Counting all composite numbers (not just squarefree) gives A046933.
The version for nonsquarefree numbers is A061399.
Zeros are A068360.
The version for prime-powers is A080101.
Partial sums are A337030.
The version for non-prime-powers is A368748.
Excluding prime(n+1) from the range gives A373198.
Ones are A377430.
Positives are A377431.
The version for perfect-powers is A377432.
The version for non-perfect-powers is A377433 + 2.
For squarefree numbers (A005117) between primes:
- length is A061398 (this sequence)
- min is A112926
- max is A112925
- sum is A373197
For squarefree numbers between powers of two:
- length is A077643 (except initial terms), partial sums A143658
- min is A372683, difference A373125, indices A372540, firsts of A372475
- max is A372889, difference A373126
- sum is A373123
For primes between powers of two:
- length is A036378
- min is A104080 or A014210, indices A372684 (firsts of A035100)
- max is A014234, difference A013603
- sum is A293697 (except initial terms)

Programs

  • Maple
    p:= 2:
    for n from 1 to 200 do
      q:= nextprime(p);
    A[n]:= nops(select(numtheory:-issqrfree, [$p+1..q-1]));
    p:= q;
    od:
    seq(A[i],i=1..200); # Robert Israel, Jan 06 2017
  • Mathematica
    a[n_] := Count[Range[Prime[n]+1, Prime[n+1]-1], _?SquareFreeQ];
    Array[a, 100] (* Jean-François Alcover, Feb 28 2019 *)
    Count[Range[#[[1]]+1,#[[2]]-1],?(SquareFreeQ[#]&)]&/@Partition[ Prime[ Range[120]],2,1] (* _Harvey P. Dale, Oct 14 2021 *)
  • PARI
    { n=0; q=2; forprime (p=3, prime(1001), a=0; for (i=q+1, p-1, a+=issquarefree(i)); write("b061398.txt", n++, " ", a); q=p ) } \\ Harry J. Smith, Jul 22 2009
    
  • PARI
    a(n) = my(pp=prime(n)+1); sum(k=pp, nextprime(pp)-1, issquarefree(k)); \\ Michel Marcus, Feb 28 2019
    
  • Python
    from math import isqrt
    from sympy import mobius, prime, nextprime
    def A061398(n):
        p = prime(n)
        q = nextprime(p)
        r = isqrt(p-1)+1
        return sum(mobius(k)*((q-1)//k**2) for k in range(r,isqrt(q-1)+1))+sum(mobius(k)*((q-1)//k**2-(p-1)//k**2) for k in range(1,r))-1 # Chai Wah Wu, Jun 01 2024

Formula

a(n) = A013928(A000040(n+1)) - A013928(A000040(n)) - 1. - Robert Israel, Jan 06 2017
a(n) = A373198(n) - 1. - Gus Wiseman, Nov 06 2024

A120992 Number of integers in n-th run of squarefree positive integers.

Original entry on oeis.org

3, 3, 2, 3, 1, 1, 3, 1, 3, 3, 3, 3, 2, 1, 1, 1, 3, 2, 3, 3, 2, 3, 2, 3, 1, 1, 3, 1, 3, 3, 3, 3, 2, 2, 1, 3, 2, 3, 3, 2, 1, 1, 2, 3, 1, 1, 3, 1, 2, 3, 3, 3, 2, 3, 1, 1, 3, 2, 3, 3, 3, 3, 2, 3, 1, 1, 3, 1, 2, 1, 1, 3, 3, 2, 3, 1, 1, 2, 2, 3, 3, 2, 1, 1, 2, 3, 1
Offset: 1

Views

Author

Leroy Quet, Jul 21 2006

Keywords

Comments

The values 1, 2 and 3 occur 309008, 251134 and 439858 times, respectively, in the first 1000000 terms. - Rick L. Shepherd, Jul 25 2006
From Reinhard Zumkeller, Jan 20 2008: (Start)
1 <= a(n) <= 3.
A136742(n) = Product{k=0..a(n)} (A072284(n)+k).
A136743(n) = Sum_{k=0..a(n)} A001221(A072284(n)+k).
(End)
Also the lengths of runs in A243348, differences of the n-th squarefree number and n. - Antti Karttunen, Jun 06 2014

Examples

			The runs of squarefree integers are as follows: (1,2,3), (5,6,7), (10,11), (13,14,15), (17), (19), (21,22,23),...
		

Crossrefs

Programs

  • Maple
    with(numtheory): a:=proc(n) if mobius(n)=0 then n else fi end: A:=[0,seq(a(n),n=1..500)]: b:=proc(n) if A[n]-A[n-1]>1 then A[n]-A[n-1]-1 else fi end: seq(b(n),n=2..nops(A)); # Emeric Deutsch, Jul 24 2006
  • Mathematica
    t = {}; cnt = 0; Do[If[SquareFreeQ[n], cnt++, If[cnt > 0, AppendTo[t, cnt]; cnt = 0]], {n, 500}]; t (* T. D. Noe, Mar 19 2013 *)
  • PARI
    n=1; while(n<1000, c=0; while(issquarefree(n), n++; c++); print1(c,", "); while(!issquarefree(n), n++)) \\ Rick L. Shepherd, Jul 25 2006
    
  • Scheme
    ;; With Antti Karttunen's IntSeq-library.
    (define (A120992 n) (if (= n 1) (Aincr_points_of_A243348 n) (- (Aincr_points_of_A243348 n) (Aincr_points_of_A243348 (- n 1)))))
    ;; Using these two auxiliary functions, not submitted separately:
    (define Aincr_points_of_A243348 (COMPOSE -1+ (NONZERO-POS 1 1 Afirst_diffs_of_A243348)))
    (define (Afirst_diffs_of_A243348 n) (if (< n 2) (- n 1) (- (A243348 n) (A243348 (- n 1)))))

Extensions

More terms from Emeric Deutsch and Rick L. Shepherd, Jul 25 2006

A112925 Largest squarefree integer < the n-th prime.

Original entry on oeis.org

1, 2, 3, 6, 10, 11, 15, 17, 22, 26, 30, 35, 39, 42, 46, 51, 58, 59, 66, 70, 71, 78, 82, 87, 95, 97, 102, 106, 107, 111, 123, 130, 134, 138, 146, 149, 155, 161, 166, 170, 178, 179, 190, 191, 195, 197, 210, 222, 226, 227, 231, 238, 239, 249, 255, 262, 267, 269, 274, 278
Offset: 1

Views

Author

Leroy Quet, Oct 06 2005

Keywords

Examples

			6 is the largest squarefree less than the 4th prime, 7. So a(4) = 6.
		

Crossrefs

For prime powers instead of squarefree numbers we have A065514, opposite A345531.
Restriction of A070321 (differences A378085) to the primes; see A378619.
The opposite is A112926, differences A378037.
Subtracting each term from prime(n) gives A240473, opposite A240474.
For nonsquarefree numbers we have A378033, differences A378036, see A378034, A378032.
For perfect powers we have A378035.
First differences are A378038.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers, differences A076259.
A013928 counts squarefree numbers up to n - 1.
A013929 lists the nonsquarefree numbers, differences A078147.
A061398 counts squarefree numbers between primes, zeros A068360.
A061399 counts nonsquarefree numbers between primes, zeros A068361.
A112929 counts squarefree numbers up to prime(n).

Programs

  • Maple
    with(numtheory): a:=proc(n) local p,B,j: p:=ithprime(n): B:={}: for j from 1 to p-1 do if abs(mobius(j))>0 then B:=B union {j} else B:=B fi od: B[nops(B)] end: seq(a(m),m=1..75); # Emeric Deutsch, Oct 14 2005
  • Mathematica
    With[{k = 120}, Table[SelectFirst[Range[Prime@ n - 1, Prime@ n - Min[Prime@ n - 1, k], -1], SquareFreeQ], {n, 60}]] (* Michael De Vlieger, Aug 16 2017 *)
  • PARI
    a(n,p=prime(n))=while(!issquarefree(p--),); p \\ Charles R Greathouse IV, Aug 16 2017

Formula

a(n) = prime(n) - A240473(n). - Gus Wiseman, Jan 10 2025

Extensions

More terms from Emeric Deutsch, Oct 14 2005

A112926 Smallest squarefree integer > the n-th prime.

Original entry on oeis.org

3, 5, 6, 10, 13, 14, 19, 21, 26, 30, 33, 38, 42, 46, 51, 55, 61, 62, 69, 73, 74, 82, 85, 91, 101, 102, 105, 109, 110, 114, 129, 133, 138, 141, 151, 154, 158, 165, 170, 174, 181, 182, 193, 194, 199, 201, 213, 226, 229, 230, 235, 241, 246, 253, 258, 265, 271, 273
Offset: 1

Views

Author

Leroy Quet, Oct 06 2005

Keywords

Examples

			10 is the smallest squarefree number greater than the 4th prime, 7. So a(4) = 10.
From _Gus Wiseman_, Dec 07 2024: (Start)
The first number line below shows the squarefree numbers. The second shows the primes:
--1--2--3-----5--6--7-------10-11----13-14-15----17----19----21-22-23-------26--
=====2==3=====5=====7==========11====13==========17====19==========23===========
(End)
		

Crossrefs

Restriction of A067535, differences A378087.
The unrestricted opposite is A070321, differences A378085.
The opposite is A112925, differences A378038.
Subtracting prime(n) from each term gives A240474, opposite A240473.
For nonsquarefree we have A377783, restriction of A120327.
The nonsquarefree differences are A377784, restriction of A378039.
First differences are A378037.
For perfect power we have A378249, A378617, A378250, A378251.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A061398 counts squarefree numbers between primes, zeros A068360.
A061399 counts nonsquarefree numbers between primes, zeros A068361.

Programs

  • Maple
    with(numtheory): a:=proc(n) local p,B,j: p:=ithprime(n): B:={}: for j from p+1 to p+20 do if abs(mobius(j))>0 then B:=B union {j} else B:=B fi od: B[1] end: seq(a(m),m=1..75); # Emeric Deutsch, Oct 10 2005
  • Mathematica
    Do[k = Prime[n] + 1; While[ !SquareFreeQ[k], k++ ]; Print[k], {n, 1, 100}] (* Ryan Propper, Oct 10 2005 *)
    With[{k = 120}, Table[SelectFirst[Range[Prime@ n + 1, Prime@ n + k], SquareFreeQ], {n, 58}]] (* Michael De Vlieger, Aug 16 2017 *)
  • PARI
    a(n,p=prime(n))=while(!issquarefree(p++),); p \\ Charles R Greathouse IV, Aug 16 2017

Formula

a(n) = prime(n) + A240474(n). - Gus Wiseman, Dec 07 2024

Extensions

More terms from Ryan Propper and Emeric Deutsch, Oct 10 2005

A061399 Number of nonsquarefree integers between primes prime(n) and prime(n+1).

Original entry on oeis.org

0, 1, 0, 2, 1, 1, 1, 1, 4, 0, 2, 1, 0, 2, 4, 2, 1, 2, 1, 1, 2, 2, 2, 3, 3, 0, 1, 1, 1, 7, 1, 3, 0, 4, 1, 3, 2, 1, 4, 2, 1, 3, 1, 1, 1, 4, 3, 2, 1, 1, 2, 1, 6, 2, 2, 2, 1, 3, 2, 0, 4, 6, 1, 1, 2, 4, 3, 5, 1, 3, 1, 4, 3, 3, 1, 3, 2, 1, 3, 3, 1, 4, 1, 1, 2, 2, 3, 2, 0, 1, 5, 3, 2, 3, 1, 3, 4, 1, 9, 1, 5, 2, 3, 0, 3
Offset: 1

Views

Author

Labos Elemer, Jun 07 2001

Keywords

Examples

			Between 113 and 127 the 7 numbers which are not squarefree are {116,117,120,121,124,125,126}, so a(30)=7.
From _Gus Wiseman_, Dec 07 2024: (Start)
The a(n) nonsquarefree numbers for n = 1..15:
   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
  ----------------------------------------------------------
   .   4   .   8  12  16  18  20  24   .  32  40   .  44  48
               9                  25      36          45  49
                                  27                      50
                                  28                      52
(End)
		

Crossrefs

Zeros are A068361.
First differences of A378086, restriction of A057627 to the primes.
Other classes (instead of nonsquarefree):
- For composite we have A046933, first differences of A065890.
- For squarefree see A061398, A068360, A071403, A373197, A373198, A377431.
- For prime power we have A080101.
- For non prime power we have A368748, see A378616.
- For perfect power we have A377432, zeros A377436.
- For non perfect power we have A377433, A029707.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers, differences A076259.
A013929 lists the nonsquarefree numbers, differences A078147.
A120327 gives the least nonsquarefree number >= n.

Programs

A070321 Greatest squarefree number <= n.

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 7, 7, 7, 10, 11, 11, 13, 14, 15, 15, 17, 17, 19, 19, 21, 22, 23, 23, 23, 26, 26, 26, 29, 30, 31, 31, 33, 34, 35, 35, 37, 38, 39, 39, 41, 42, 43, 43, 43, 46, 47, 47, 47, 47, 51, 51, 53, 53, 55, 55, 57, 58, 59, 59, 61, 62, 62, 62, 65, 66, 67, 67, 69, 70, 71, 71
Offset: 1

Views

Author

Benoit Cloitre, May 11 2002

Keywords

Comments

a(n) = Max( core(k) : k=1,2,3,...,n ) where core(x) is the squarefree part of x (the smallest integer such that x*core(x) is a square).

Examples

			From _Gus Wiseman_, Dec 10 2024: (Start)
The squarefree numbers <= n are the following columns, with maxima a(n):
  1  2  3  3  5  6  7  7  7  10  11  11  13  14  15  15
     1  2  2  3  5  6  6  6  7   10  10  11  13  14  14
        1  1  2  3  5  5  5  6   7   7   10  11  13  13
              1  2  3  3  3  5   6   6   7   10  11  11
                 1  2  2  2  3   5   5   6   7   10  10
                    1  1  1  2   3   3   5   6   7   7
                             1   2   2   3   5   6   6
                                 1   1   2   3   5   5
                                         1   2   3   3
                                             1   2   2
                                                 1   1
(End)
		

Crossrefs

The distinct terms are A005117 (the squarefree numbers).
The opposite version is A067535, differences A378087.
The run-lengths are A076259.
Restriction to the primes is A112925; see A378038, A112926, A378037.
For nonsquarefree we have A378033; see A120327, A378036, A378032, A377783.
First differences are A378085.
Subtracting each term from n gives A378619.
A013929 lists the nonsquarefree numbers, differences A078147.
A061398 counts squarefree numbers between primes, zeros A068360.
A061399 counts nonsquarefree numbers between primes, zeros A068361.

Programs

  • Maple
    A070321 := proc(n)
        local a;
        for a from n by -1 do
            if issqrfree(a) then
                return a;
            end if;
        end do:
    end proc:
    seq(A070321(n),n=1..100) ; # R. J. Mathar, May 25 2023
  • Mathematica
    a[n_] :=For[ k = n, True, k--, If[ SquareFreeQ[k], Return[k]]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Mar 27 2013 *)
    gsfn[n_]:=Module[{k=n},While[!SquareFreeQ[k],k--];k]; Array[gsfn,80] (* Harvey P. Dale, Mar 27 2013 *)
  • PARI
    a(n) = while (! issquarefree(n), n--); n; \\ Michel Marcus, Mar 18 2017
    
  • Python
    from itertools import count
    from sympy import factorint
    def A070321(n): return next(m for m in count(n,-1) if max(factorint(m).values(),default=0)<=1) # Chai Wah Wu, Dec 04 2024

Formula

a(n) = n - o(n^(1/5)) by a result of Pandey. - Charles R Greathouse IV, Dec 04 2024
a(n) = A005117(A013928(n+1)). - Ridouane Oudra, Jul 26 2025

Extensions

New description from Reinhard Zumkeller, Oct 03 2002

A120327 Smallest nonsquarefree number >= n.

Original entry on oeis.org

4, 4, 4, 4, 8, 8, 8, 8, 9, 12, 12, 12, 16, 16, 16, 16, 18, 18, 20, 20, 24, 24, 24, 24, 25, 27, 27, 28, 32, 32, 32, 32, 36, 36, 36, 36, 40, 40, 40, 40, 44, 44, 44, 44, 45, 48, 48, 48, 49, 50, 52, 52, 54, 54, 56, 56, 60, 60, 60, 60, 63, 63, 63, 64, 68, 68, 68, 68, 72, 72, 72, 72
Offset: 1

Views

Author

Zak Seidov, Aug 16 2006

Keywords

Crossrefs

For squarefree instead of nonsquarefree we have A067535, differences A378087.
The opposite for squarefree is A070321, differences A378085.
The run-lengths are A078147 if we prepend 4, differences A376593.
The restriction to primes is A377783 (union A378040), differences A377784.
The opposite is A378033 (differences A378036), for prime powers A031218.
First differences are A378039 if we assume that a(1) = 1.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers.
A061398 counts squarefree numbers between primes, zeros A068360.
A061399 counts nonsquarefree numbers between primes, zeros A068361.

Programs

  • Mathematica
    Table[NestWhile[ #+1&,n,SquareFreeQ],{n,100}] (* simplified by Harvey P. Dale, Apr 08 2014 *)

A057627 Number of nonsquarefree numbers not exceeding n.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 7, 7, 7, 7, 8, 9, 9, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 16, 16, 16, 17, 18, 19, 19, 20, 20, 21, 21, 22, 22, 22, 22, 23, 23, 23, 24, 25, 25, 25, 25, 26, 26, 26, 26, 27, 27, 27, 28, 29, 29, 29
Offset: 1

Views

Author

Labos Elemer, Oct 10 2000

Keywords

Comments

Number of integers k in A013929 in the range 1 <= k <= n.
This sequence is different from A013940, albeit the first 35 terms are identical.
Asymptotic to k*n where k = 1 - 1/zeta(2) = 1 - 6/Pi^2 = A229099. - Daniel Forgues, Jan 28 2011
This sequence is the sequence of partial sums of A107078 (not of A056170). - Jason Kimberley, Feb 01 2017
Number of partitions of 2n into two parts with the smallest part nonsquarefree. - Wesley Ivan Hurt, Oct 25 2017

Examples

			a(36)=13 because 13 nonsquarefree numbers exist which do not exceed 36:{4,8,9,12,16,18,20,24,25,27,28,32,36}.
		

Crossrefs

Programs

  • Maple
    N:= 1000: # to get terms up to a(N)
    B:= Array(1..N, numtheory:-issqrfree):
    C:= map(`if`,B,0,1):
    A:= map(round,Statistics:-CumulativeSum(C)):
    seq(A[n],n=1..N); # Robert Israel, Jun 03 2014
  • Mathematica
    Accumulate[Table[If[SquareFreeQ[n],0,1],{n,80}]] (* Harvey P. Dale, Jun 04 2014 *)
  • PARI
    a(n) = my(s=0); forsquarefree(k=1, sqrtint(n), s += (-1)^(#k[2]~) * (n\k[1]^2)); n - s; \\ Charles R Greathouse IV, May 18 2015; corrected by Daniel Suteu, May 11 2023
    
  • Python
    from math import isqrt
    from sympy import mobius
    def A057627(n): return n-sum(mobius(k)*(n//k**2) for k in range(1,isqrt(n)+1)) # Chai Wah Wu, May 10 2024
  • Scheme
    (define (A057627 n) (- n (A013928 (+ n 1))))
    

Formula

a(n) = n - A013928(n+1) = n - Sum_{k=1..n} mu(k)^2.
G.f.: Sum_{k>=1} (1 - mu(k)^2)*x^k/(1 - x). - Ilya Gutkovskiy, Apr 17 2017

Extensions

Offset and formula corrected by Antti Karttunen, Jun 03 2014

A068361 Numbers n such that the number of squarefree numbers between prime(n) and prime(n+1) = prime(n+1)-prime(n)-1.

Original entry on oeis.org

1, 3, 10, 13, 26, 33, 60, 89, 104, 113, 116, 142, 148, 201, 209, 212, 234, 265, 268, 288, 313, 320, 332, 343, 353, 384, 398, 408, 477, 484, 498, 542, 545, 551, 577, 581, 601, 625, 636, 671, 719, 723, 726, 745, 794, 805, 815, 862, 864, 884, 944, 964, 995, 1054
Offset: 1

Views

Author

Benoit Cloitre, Feb 28 2002

Keywords

Comments

Also numbers k such that all numbers from prime(k) to prime(k+1) are squarefree. All such primes are twins, so this is a subset of A029707. The other twin primes are A061368. - Gus Wiseman, Dec 11 2024

Crossrefs

A subset of A029707 (lesser index of twin primes).
Prime index of each (prime) term of A061351.
Positions of zeros in A061399.
For perfect power instead of squarefree we have A377436, zeros of A377432.
Positions of zeros in A377784.
The rest of the twin primes are at A378620, indices of A061368.
A000040 lists the primes, differences A001223, (run-lengths A333254, A373821).
A005117 lists the squarefree numbers, differences A076259.
A006562 finds balanced primes.
A013929 lists the nonsquarefree numbers, differences A078147.
A014574 is the intersection of A006093 and A008864.
A038664 locates the first prime gap of size 2n.
A046933 counts composite numbers between primes.
A061398 counts squarefree numbers between primes, zeros A068360.
A120327 gives the least nonsquarefree number >= n.

Programs

  • Mathematica
    Select[Range[100],And@@SquareFreeQ/@Range[Prime[#],Prime[#+1]]&] (* Gus Wiseman, Dec 11 2024 *)
  • PARI
    isok(n) = for (k=prime(n)+1, prime(n+1)-1, if (!issquarefree(k), return (0))); 1; \\ Michel Marcus, Apr 29 2016

Formula

n such that A061398(n) = prime(n+1)-prime(n)-1.
prime(a(n)) = A061351(n). - Gus Wiseman, Dec 11 2024

A143658 Number of squarefree integers not exceeding 2^n.

Original entry on oeis.org

1, 2, 3, 6, 11, 20, 39, 78, 157, 314, 624, 1245, 2491, 4982, 9962, 19920, 39844, 79688, 159360, 318725, 637461, 1274918, 2549834, 5099650, 10199301, 20398664, 40797327, 81594626, 163189197, 326378284, 652756722, 1305513583, 2611027094
Offset: 0

Views

Author

M. F. Hasler, Aug 28 2008

Keywords

Comments

Except for the first 2 terms, it would not make a difference to replace "not exceeding" by "less than": that sequence would start 0,1,3,6,11,20,39,78,...

Examples

			a(4) = 11 since there are the 11 squarefree integers {1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15} not exceeding 2^4=16.
		

Crossrefs

Programs

  • Mathematica
    c = 0; k = 1; lst = {1}; Do[ While[k <= 2^n, If[ SquareFreeQ@k, c++ ]; k++ ]; AppendTo[lst, c], {n, 27}] (* Robert G. Wilson v, Aug 31 2008 *)
  • PARI
    print1(s=1);for(p=1,20,print1(", ",s+=sum(k=2^(p-1)+1, 2^p, issquarefree(k))))
    
  • PARI
    a(n)=sum(d=1,sqrtint(n=2^n),moebius(d)*n\d^2) \\ Charles R Greathouse IV, Nov 14 2012
    
  • PARI
    a(n)=my(s); forsquarefree(d=1,sqrtint(n=2^n), s += n\d[1]^2*moebius(d)); s \\ Charles R Greathouse IV, Jan 08 2018
    
  • Python
    from math import isqrt
    from sympy import mobius
    def A143658(n):
        m = 1<Chai Wah Wu, Jun 01 2024

Formula

a(n) = Sum for i = 1 to 2^(n/2) of A008683(i)*floor(2^n/i^2). - Gerard P. Michon, Apr 30 2009
The limit of a(n)/2^n is 6/Pi^2. - Gerard P. Michon, Apr 30 2009

Extensions

5 more terms from Robert G. Wilson v, Aug 31 2008
More terms from Alexis Olson (AlexisOlson(AT)gmail.com), Nov 08 2008
Previous Showing 11-20 of 104 results. Next