A339115
Greatest semiprime whose prime indices sum to n.
Original entry on oeis.org
4, 6, 10, 15, 25, 35, 55, 77, 121, 143, 187, 221, 289, 323, 391, 493, 551, 667, 841, 899, 1073, 1189, 1369, 1517, 1681, 1763, 1961, 2183, 2419, 2537, 2809, 3127, 3481, 3599, 3953, 4189, 4489, 4757, 5041, 5293, 5723, 5963, 6499, 6887, 7171, 7663, 8051, 8633
Offset: 2
The sequence of terms together with their prime indices begins:
4: {1,1} 493: {7,10} 2809: {16,16}
6: {1,2} 551: {8,10} 3127: {16,17}
10: {1,3} 667: {9,10} 3481: {17,17}
15: {2,3} 841: {10,10} 3599: {17,18}
25: {3,3} 899: {10,11} 3953: {17,19}
35: {3,4} 1073: {10,12} 4189: {17,20}
55: {3,5} 1189: {10,13} 4489: {19,19}
77: {4,5} 1369: {12,12} 4757: {19,20}
121: {5,5} 1517: {12,13} 5041: {20,20}
143: {5,6} 1681: {13,13} 5293: {19,22}
187: {5,7} 1763: {13,14} 5723: {17,25}
221: {6,7} 1961: {12,16} 5963: {19,24}
289: {7,7} 2183: {12,17} 6499: {19,25}
323: {7,8} 2419: {13,17} 6887: {20,25}
391: {7,9} 2537: {14,17} 7171: {20,26}
A024697 is the sum of the same semiprimes.
A338904 has this sequence as row maxima.
A339114 is the least among the same semiprimes.
A037143 lists primes and semiprimes.
A087112 groups semiprimes by greater factor.
A320655 counts factorizations into semiprimes.
Cf.
A000040,
A001221,
A001222,
A014342,
A025129,
A056239,
A062198,
A098350,
A112798,
A338905,
A339116.
-
P:= [seq(ithprime(i),i=1..200)]:
[seq(max(seq(P[i]*P[j-i],i=1..j-1)),j=2..200)]; # Robert Israel, Dec 06 2020
-
Table[Max@@Table[Prime[k]*Prime[n-k],{k,n-1}],{n,2,30}]
A339195
Triangle of squarefree numbers grouped by greatest prime factor, read by rows.
Original entry on oeis.org
1, 2, 3, 6, 5, 10, 15, 30, 7, 14, 21, 35, 42, 70, 105, 210, 11, 22, 33, 55, 66, 77, 110, 154, 165, 231, 330, 385, 462, 770, 1155, 2310, 13, 26, 39, 65, 78, 91, 130, 143, 182, 195, 273, 286, 390, 429, 455, 546, 715, 858, 910, 1001, 1365, 1430, 2002, 2145, 2730, 3003, 4290, 5005, 6006, 10010, 15015, 30030
Offset: 0
Triangle begins:
1
2
3 6
5 10 15 30
7 14 21 35 42 70 105 210
- Alois P. Heinz, Rows n = 0..14, flattened
- Michael De Vlieger, Plot p | a(n) at (x,y) = (n,pi(p)), n = 0..2047, 12X vertical exaggeration.
- Michael De Vlieger, Fan style binary tree showing a(n), n = 0..2047, with a color function related to the order of a(n) in A019565.
- Michael De Vlieger, Fan style binary tree showing a(n), n = 0..2047, with a color function showing 1 in gray, primes in red, primorials in bright green, even squarefree semiprimes in yellow, odd squarefree semiprimes in light green, thereafter, progressively deeper green related to omega(a(n)) = m until m >= 6.
A209862 takes prime indices to binary indices in these terms.
A246867 groups squarefree numbers by Heinz weight, with row sums
A147655.
A005117 lists squarefree numbers, ordered lexicographically by prime factors:
A019565.
A006881 lists squarefree semiprimes.
A072047 counts prime factors of squarefree numbers.
A319246 is the sum of prime indices of the n-th squarefree number.
-
T:= proc(n) option remember; `if`(n=0, 1, (p-> map(
x-> x*p, {seq(T(i), i=0..n-1)})[])(ithprime(n)))
end:
seq(T(n), n=0..6); # Alois P. Heinz, Jan 08 2025
-
Table[Prime[n]*Sort[Times@@Prime/@#&/@Subsets[Range[n-1]]],{n,5}]
A340991
Triangle T(n,k) whose k-th column is the k-fold self-convolution of the primes; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 2, 0, 3, 4, 0, 5, 12, 8, 0, 7, 29, 36, 16, 0, 11, 58, 114, 96, 32, 0, 13, 111, 291, 376, 240, 64, 0, 17, 188, 669, 1160, 1120, 576, 128, 0, 19, 305, 1386, 3121, 4040, 3120, 1344, 256, 0, 23, 462, 2678, 7532, 12450, 12864, 8288, 3072, 512, 0, 29, 679, 4851, 16754, 34123, 44652, 38416, 21248, 6912, 1024
Offset: 0
Triangle T(n,k) begins:
1;
0, 2;
0, 3, 4;
0, 5, 12, 8;
0, 7, 29, 36, 16;
0, 11, 58, 114, 96, 32;
0, 13, 111, 291, 376, 240, 64;
0, 17, 188, 669, 1160, 1120, 576, 128;
0, 19, 305, 1386, 3121, 4040, 3120, 1344, 256;
0, 23, 462, 2678, 7532, 12450, 12864, 8288, 3072, 512;
...
-
T:= proc(n, k) option remember; `if`(k=0, `if`(n=0, 1, 0),
`if`(k=1, `if`(n=0, 0, ithprime(n)), (q->
add(T(j, q)*T(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
seq(seq(T(n, k), k=0..n), n=0..12);
# Uses function PMatrix from A357368.
PMatrix(10, ithprime); # Peter Luschny, Oct 09 2022
-
T[n_, k_] := T[n, k] = If[k == 0, If[n == 0, 1, 0],
If[k == 1, If[n == 0, 0, Prime[n]], With[{q = Quotient[k, 2]},
Sum[T[j, q] T[n - j, k - q], {j, 0, n}]]]];
Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Feb 10 2021, after Alois P. Heinz *)
A299111
Maximum value of the cyclic convolution of first n primes with themselves.
Original entry on oeis.org
4, 13, 37, 82, 183, 344, 601, 918, 1355, 2048, 2873, 3978, 5455, 7112, 9105, 11530, 14391, 17504, 21353, 25686, 30311, 35536, 41421, 48010, 55911, 64632, 73869, 83766, 94151, 105420, 118569, 132566, 148247, 164564, 182617, 201770, 222975, 245532, 269253
Offset: 1
For n = 4 the four possible cyclic convolution of first four primes with themselves are:
(2,3,5,7).(7,5,3,2) = 2*7 + 3*5 + 5*3 + 7*2 = 14 + 15 + 15 + 14 = 58,
(2,3,5,7).(2,7,5,3) = 2*2 + 3*7 + 5*5 + 7*3 = 4 + 21 + 25 + 21 = 71,
(2,3,5,7).(3,2,7,5) = 2*3 + 3*2 + 5*7 + 7*5 = 6 + 6 + 35 + 35 = 82,
(2,3,5,7).(5,3,2,7) = 2*5 + 3*3 + 5*2 + 7*7 = 10 + 9 + 10 + 49 = 78,
then a(4)=82 because 82 is the maximum among the four values.
-
f:= proc(n) local V,R,i;
V:= Vector(n, ithprime);
R:= ArrayTools:-FlipDimension(V,1)^%T;
max(seq(ArrayTools:-CircularShift(R,i) . V, i=0..n-1))
end proc:
map(f, [$1..100]); # Robert Israel, Feb 07 2018
-
a[n_]:=Prime[Range[n]];
Table[Max@Table[a[n].RotateRight[Reverse[a[n]], j], {j, 0, n - 1}], {n,1,36}]
-
a(n) = my(vp=primes(n)); vecmax(vector(n, k, sum(i=1, n, vp[n-i+1]*vp[1+(i+k)%n]))); \\ Michel Marcus, Feb 07 2018; Jun 15 2022
A339194
Sum of all squarefree semiprimes with greater prime factor prime(n).
Original entry on oeis.org
0, 6, 25, 70, 187, 364, 697, 1102, 1771, 2900, 3999, 5920, 8077, 10234, 13207, 17384, 22479, 26840, 33567, 40328, 46647, 56248, 65653, 77786, 93411, 107060, 119583, 135248, 149439, 167240, 202311, 225320, 253587, 276332, 316923, 343676, 381039, 421192, 458749
Offset: 1
The triangle A339116 with row sums equal to this sequence begins (n > 1):
6 = 6
25 = 10 + 15
70 = 14 + 21 + 35
187 = 22 + 33 + 55 + 77
A025129 gives sums of squarefree semiprimes by weight, row sums of
A338905.
A143215 is the not necessarily squarefree version, row sums of
A087112.
A339116 is a triangle of squarefree semiprimes with these row sums.
A024697 is the sum of semiprimes of weight n.
A168472 gives partial sums of squarefree semiprimes.
A332765 gives the greatest squarefree semiprime of weight n.
A338904 groups semiprimes by weight.
-
Table[Sum[Prime[i]*Prime[j],{j,i-1}],{i,10}]
-
a(n) = prime(n)*vecsum(primes(n-1)); \\ Michel Marcus, Jun 15 2024
A023626
Self-convolution of (1, p(1), p(2), ...).
Original entry on oeis.org
1, 4, 10, 22, 43, 80, 137, 222, 343, 508, 737, 1030, 1411, 1888, 2477, 3198, 4059, 5096, 6297, 7702, 9327, 11176, 13301, 15682, 18355, 21344, 24673, 28358, 32411, 36896, 41769, 47082, 52883, 59148, 65937, 73298, 81251, 89776, 98957
Offset: 1
G.f. = x + 4*x^2 + 10*x^3 + 22*x^4 + 43*x^5 + 80*x^6 + 137*x^7 + ...
-
a023626 n = a023626_list !! (n-2)
a023626_list = f a000040_list [1] where
f (p:ps) rs = (sum $ zipWith (*) rs a008578_list) : f ps (p : rs)
-- Reinhard Zumkeller, Nov 09 2015
-
z = 100; p = Join[{1}, Prime[Range[z]]];
a[n_] := Sum[p[[i]] p[[n - i + 1]], {i, 1, n}];
Table[a[n], {n, 1, z}] (* Clark Kimberling, Dec 01 2016 *)
a[ n_] := If[ n < 1, 0, SeriesCoefficient[ (1 + O[x]^n + Sum[ Prime[k] x^k, {k, n - 1}])^2, {x, 0, n - 1}]]; (* Michael Somos, Dec 01 2016 *)
Table[With[{c=Join[{1},Prime[Range[n]]]},ListConvolve[c,c]],{n,0,40}]// Flatten (* Harvey P. Dale, Oct 19 2018 *)
A143215
a(n) = prime(n) * Sum_{i=1..n} prime(i).
Original entry on oeis.org
4, 15, 50, 119, 308, 533, 986, 1463, 2300, 3741, 4960, 7289, 9758, 12083, 15416, 20193, 25960, 30561, 38056, 45369, 51976, 62489, 72542, 85707, 102820, 117261, 130192, 146697, 161320, 180009, 218440, 242481, 272356, 295653, 339124, 366477
Offset: 1
The series begins (4, 15, 50, 119, 308,...) since the primes = (2, 3, 5, 7, 11,...) and partial sum of primes = (2, 5, 10, 17, 28,...).
a(5) = 308 = 11 * 28.
a(4) = 119 = sum of row 4 terms of triangle A087112: (14 + 21 + 35 + 49).
Squarefree semiprimes grouped by weight are
A338905, with row sums
A025129.
Squarefree numbers grouped by greatest prime factor are
A339195, with row sums
A339360.
A006881 lists squarefree semiprimes.
A332765 is the greatest semiprime of weight n.
Cf.
A000040,
A001222,
A001748,
A007504,
A014342,
A098350,
A100484,
A168472,
A319613,
A339003,
A339114/
A339115.
-
a143215 n = a000040 n * a007504 n -- Reinhard Zumkeller, Nov 25 2012
-
A143215:= func< n | NthPrime(n)*(&+[NthPrime(j): j in [1..n]]) >;
[A143215(n): n in [1..50]]; // G. C. Greubel, Aug 27 2024
-
A143215:=n->ithprime(n)*sum(ithprime(i), i=1..n); seq(A143215(n), n=1..50); # Wesley Ivan Hurt, Mar 26 2014
-
Table[Prime[n]*Sum[Prime[i], {i, n}], {n, 50}] (* Wesley Ivan Hurt, Mar 26 2014 *)
-
a(n) = prime(n)*vecsum(primes(n)); \\ Michel Marcus, Jun 15 2024
-
def A143215(n): return nth_prime(n)*sum(nth_prime(j) for j in range(1,n+1))
[A143215(n) for n in range(1,51)] # G. C. Greubel, Aug 27 2024
A209403
Convolution of primes with odd primes.
Original entry on oeis.org
6, 19, 44, 89, 162, 271, 424, 633, 910, 1275, 1732, 2309, 3018, 3859, 4872, 6057, 7446, 9051, 10888, 12997, 15358, 18011, 20972, 24277, 27950, 31991, 36464, 41325, 46602, 52367, 58612, 65385, 72722, 80651, 89160, 98317, 108070, 118535, 129756, 141713, 154442
Offset: 1
-
a209403 n = sum $
zipWith (*) (reverse $ take n a000040_list) a065091_list
-
[&+[NthPrime(k)*NthPrime(n+1-k): k in [1..n-1]]: n in [2..40]]; // Bruno Berselli, Mar 08 2012
-
Rest[Flatten[Table[ListConvolve[Prime[Range[2,n]],Prime[Range[n-1]]],{n,50}]]] (* Harvey P. Dale, Jan 10 2022 *)
-
from numpy import convolve
from sympy import prime, primerange
def aupton(nn):
primes = list(primerange(2, prime(nn+1)+1))
return list(convolve(primes[:-1], primes[1:]))[:nn]
print(aupton(41)) # Michael S. Branicky, Jun 19 2021
A014343
Three-fold convolution of primes with themselves.
Original entry on oeis.org
8, 36, 114, 291, 669, 1386, 2678, 4851, 8373, 13858, 22134, 34263, 51635, 75972, 109374, 154483, 214383, 292812, 394148, 523521, 686901, 891112, 1143936, 1454187, 1831973, 2288400, 2836044, 3488969, 4262541, 5173836, 6241612, 7486437, 8930649, 10598848
Offset: 0
-
Table[Sum[Prime[k + 1] Sum[Prime[i] Prime[# + 1 - i], {i, #}] &[n - k + 1], {k, 0, n}], {n, 0, 26}] (* Michael De Vlieger, Dec 13 2016 *)
A014344
Four-fold convolution of primes with themselves.
Original entry on oeis.org
16, 96, 376, 1160, 3121, 7532, 16754, 34796, 68339, 127952, 229956, 398688, 669781, 1094076, 1742710, 2713604, 4139111, 6195712, 9115304, 13199072, 18833449, 26509260, 36843322, 50603884, 68740107, 92414192, 123039628, 162323200, 212312453, 275448380
Offset: 0
-
b:= proc(n, k) option remember; `if`(k=1, ithprime(n+1),
add(b(j, floor(k/2))*b(n-j, ceil(k/2)), j=0..n))
end:
a:= n-> b(n, 4):
seq(a(n), n=0..35); # Alois P. Heinz, Mar 10 2018
-
b[n_, k_] := b[n, k] = If[k==1, Prime[n+1], Sum[b[j, Floor[k/2]] b[n-j, Ceiling[k/2]], {j, 0, n}]];
a[n_] := b[n, 4];
a /@ Range[0, 35] (* Jean-François Alcover, Nov 16 2020, after Alois P. Heinz *)
-
my(N = 50, x = 'x + O('x^N)); Vec(((1/x)*sum(k=1, N, prime(k)*x^k))^4) \\ Michel Marcus, Mar 10 2018
Comments