cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 304 results. Next

A337599 Number of unordered triples of positive integers summing to n, any two of which have a common divisor > 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 2, 0, 4, 0, 4, 3, 5, 0, 9, 0, 9, 5, 10, 0, 16, 2, 14, 7, 17, 0, 27, 1, 21, 11, 24, 6, 36, 1, 30, 15, 37, 2, 51, 1, 41, 25, 44, 2, 64, 5, 58, 25, 57, 2, 81, 13, 69, 31, 70, 3, 108, 5, 80, 43, 85, 17, 123, 5, 97, 46, 120, 6, 144, 6
Offset: 0

Views

Author

Gus Wiseman, Sep 20 2020

Keywords

Comments

First differs from A082024 at a(31) = 1, A082024(31) = 0.
The first relatively prime triple is (15,10,6), counted under a(31).

Examples

			The a(6) = 1 through a(16) = 5 partitions are (empty columns indicated by dots, A..G = 10..16):
  222  .  422  333  442  .  444  .  644  555  664  .  666  .  866
                    622     633     662  663  844     864     884
                            642     842  933  862     882     A55
                            822     A22       A42     963     A64
                                              C22     A44     A82
                                                      A62     C44
                                                      C33     C62
                                                      C42     E42
                                                      E22     G22
		

Crossrefs

A014612 intersected with A337694 ranks these partitions.
A200976 and A328673 count these partitions of any length.
A284825 is the case that is also relatively prime.
A307719 is the pairwise coprime instead of non-coprime version.
A335402 gives the positions of zeros.
A337604 is the ordered version.
A337605 is the strict case.
A051424 counts pairwise coprime or singleton partitions.
A101268 counts pairwise coprime or singleton compositions.
A305713 counts strict pairwise coprime partitions.
A327516 counts pairwise coprime partitions.
A333227 ranks pairwise coprime compositions.
A333228 ranks compositions whose distinct parts are pairwise coprime.

Programs

  • Mathematica
    stabQ[u_,Q_]:=Array[#1==#2||!Q[u[[#1]],u[[#2]]]&,{Length[u],Length[u]},1,And];
    Table[Length[Select[IntegerPartitions[n,{3}],stabQ[#,CoprimeQ]&]],{n,0,100}]

A101606 a(n) = number of divisors of n that have exactly three (not necessarily distinct) prime factors.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 1, 0, 1, 1, 0, 0, 2, 0, 1, 0, 1, 0, 2, 0, 2, 0, 0, 0, 3, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 3, 0, 0, 1, 1, 0, 1, 0, 2, 1, 0, 0, 3, 0, 0, 0, 2, 0, 3, 0, 1, 0, 0, 0, 2, 0, 1, 1, 2, 0, 1, 0, 2, 1
Offset: 1

Views

Author

Jonathan Vos Post, Dec 09 2004

Keywords

Comments

This is the inverse Moebius transform of A101605. If n = (p1^e1)*(p2^e2)* ... * (pj^ej) then a(n) = |{k: ek>=3}| + ((j-1)/2)*|{k: ek>=2}| + C(j,3). The first term is the number of distinct cubes of primes in the factors of n (the first way of finding a 3-almost prime). The second term is the number of distinct squares of primes, each of which can be multiplied by any of the other distinct primes, halved to avoid double-counts (the second way of finding a 3-almost prime). The third term is the number of distinct products of 3 distinct primes, which is the number of combinations of j primes taken 3 at a time, A000292(j), (the third way of finding a 3-almost prime).

Examples

			a(60) = 3 because of all the divisors of 60 only these three are terms of A014612: 12 = 2 * 2 * 3; 20 = 2 * 2 * 5; 30 = 2 * 3 * 5.
		

References

  • Hardy, G. H. and Wright, E. M. Section 17.10 in An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, 1979.

Crossrefs

Programs

  • Maple
    isA014612 := proc(n) option remember ; RETURN( numtheory[bigomega](n) = 3) ; end: A101606 := proc(n) a :=0 ; for d in numtheory[divisors](n) do if isA014612(d) then a := a+1 ; fi; od: a ; end: for n from 1 to 120 do printf("%d,",A101606(n)) ; od: # R. J. Mathar, Jan 27 2009
  • Mathematica
    a[n_] := DivisorSum[n, Boole[PrimeOmega[#] == 3]&];
    Array[a, 105] (* Jean-François Alcover, Nov 14 2017 *)
  • PARI
    A101606(n) = sumdiv(n,d,(3==bigomega(d))); \\ Antti Karttunen, Jul 23 2017

Formula

If n = (p1^e1 * p2^e2 * ... * pj^ej) for primes p1, p2, ..., pj and integer exponents e1, e2, ..., ej, then a(n) = a(n) = |{k: ek>=3}| + ((j-1)/2)*|{k: ek>=2}| + C(j, 3). where C(j, 3) is the binomial coefficient A000292(j).
a(n) = Sum_{d|n} A101605(d). - Antti Karttunen, Jul 23 2017

Extensions

a(48) replaced with 2 and a(76) replaced with 1 by R. J. Mathar, Jan 27 2009
Name changed by Antti Karttunen, Jul 23 2017

A101638 Number of distinct 4-almost primes A014613 which are factors of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1
Offset: 1

Views

Author

Jonathan Vos Post, Dec 10 2004

Keywords

Comments

This is the inverse Moebius transform of A101637. If we take the prime factorization of n = (p1^e1)*(p2^e2)* ... * (pj^ej) then a(n) = |{k: ek>=4}| + ((j-1)/2)*|{k: ek>=3}| + C(|{k: ek>=2}|,2) + C(j,4). The first term is the number of distinct 4th powers of primes in the factors of n (the first way of finding a 4-almost prime). The second term is the number of distinct cubes of primes, each of which can be multiplied by any of the other distinct primes, halved to avoid double-counts (the second way of finding a 4-almost prime). The third term is the number of distinct pairs of squares of primes in the factors of n (the third way of finding a 4-almost prime). The 4th term is the number of distinct products of 4 distinct primes, which is the number of combinations of j primes in the factors of n taken 4 at a time, A000332(j), (the 4th way of finding a 4-almost prime).

Examples

			a(96) = 2 because 96 = 16 * 6 hence divisible by the 4-almost prime 16 and also 96 = 24 * 4 hence divisible by the 4-almost prime 24.
		

References

  • Hardy, G. H. and Wright, E. M. Section 17.10 in An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, 1979.

Crossrefs

Programs

  • PARI
    a(n)=my(f=factor(n)[,2], v=apply(k->sum(i=1,#f,f[i]>k), [0..3])); v[4] + v[3]*(v[1]-1) + binomial(v[2],2) + v[2]*binomial(v[1]-1,2) + binomial(v[1],4) \\ Charles R Greathouse IV, Sep 14 2015

A101695 a(n) = n-th n-almost prime.

Original entry on oeis.org

2, 6, 18, 40, 108, 224, 480, 1296, 2688, 5632, 11520, 25600, 53248, 124416, 258048, 540672, 1105920, 2228224, 4587520, 9830400, 19922944, 40894464, 95551488, 192937984, 396361728, 822083584, 1660944384, 3397386240, 6845104128
Offset: 1

Views

Author

Jonathan Vos Post, Dec 12 2004

Keywords

Comments

A k-almost-prime is a positive integer that has exactly k prime factors, counted with multiplicity.
This is the diagonalization of the set of sequences {j-almost prime(k)}. The cumulative sums of this sequence are in A101696. This is the diagonal just below A078841.

Examples

			a(1) = first 1-almost prime = first prime = A000040(1) = 2.
a(2) = 2nd 2-almost prime = 2nd semiprime = A001358(2) = 6.
a(3) = 3rd 3-almost prime = A014612(3) = 18.
a(4) = 4th 4-almost prime = A014613(4) = 40.
a(5) = 5th 5-almost prime = A014614(5) = 108.
		

Crossrefs

Programs

  • Maple
    A101695 := proc(n)
        local s,a ;
        s := 0 ;
        for a from 2^n do
            if numtheory[bigomega](a) = n then
                s := s+1 ;
                if s = n then
                    return a;
                end if;
            end if;
        end do:
    end proc: # R. J. Mathar, Aug 09 2012
  • Mathematica
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    AlmostPrime[k_, n_] := Block[{e = Floor[ Log[2, n] + k], a, b}, a = 2^e; Do[b = 2^p; While[ AlmostPrimePi[k, a] < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; AlmostPrime[1, 1] = 2; lst = {}; Do[ AppendTo[lst, AlmostPrime[n, n]], {n, 30}]; lst (* Robert G. Wilson v, Oct 07 2007 *)
  • Python
    from math import prod, isqrt
    from sympy import primerange, primepi, integer_nthroot
    def A101695(n):
        if n == 1: return 2
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        def f(x): return int(n-1+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n)))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 23 2024

Formula

Conjecture: lim_{ n->inf.} a(n+1)/a(n) = 2. - Robert G. Wilson v, Oct 07 2007, Nov 13 2007
Stronger conjecture: a(n)/(n * 2^n) is polylogarithmic in n. That is, there exist real numbers b < c such that (log n)^b < a(n)/(n * 2^n) < (log n)^c for large enough n. Probably b and c can be chosen close to 0. - Charles R Greathouse IV, Aug 28 2012

Extensions

a(21)-a(30) from Robert G. Wilson v, Feb 11 2006
a(12) corrected by N. J. A. Sloane, Nov 23 2007

A337601 Number of unordered triples of positive integers summing to n whose set of distinct parts is pairwise coprime, where a singleton is not considered coprime unless it is (1).

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 2, 3, 4, 4, 5, 6, 8, 7, 10, 7, 11, 11, 17, 12, 19, 12, 19, 17, 29, 16, 28, 19, 31, 23, 46, 23, 42, 25, 45, 27, 59, 31, 57, 34, 61, 37, 84, 38, 75, 42, 74, 47, 107, 45, 98, 51, 96, 56, 135, 54, 115, 63, 117, 67, 174, 65, 139, 75, 144, 75, 194
Offset: 0

Views

Author

Gus Wiseman, Sep 20 2020

Keywords

Comments

First differs from A337600 at a(9) = 4, A337600(9) = 5.

Examples

			The a(3) = 1 through a(14) = 10 partitions (A = 10, B = 11, C = 12):
  111  211  221  321  322  332  441  433  443  543  544  554
            311  411  331  431  522  532  533  552  553  743
                      511  521  531  541  551  651  661  752
                           611  711  721  722  732  733  761
                                     811  731  741  751  833
                                          911  831  922  851
                                               921  B11  941
                                               A11       A31
                                                         B21
                                                         C11
		

Crossrefs

A014612 intersected with A304711 ranks these partitions.
A220377 is the strict case.
A304709 counts these partitions of any length.
A307719 is the strict case except for any number of 1's.
A337600 considers singletons to be coprime.
A337603 is the ordered version.
A000217 counts 3-part compositions.
A000837 counts relatively prime partitions.
A001399/A069905/A211540 count 3-part partitions.
A023023 counts relatively prime 3-part partitions.
A051424 counts pairwise coprime or singleton partitions.
A101268 counts pairwise coprime or singleton compositions.
A305713 counts pairwise coprime strict partitions.
A327516 counts pairwise coprime partitions.
A333227 ranks pairwise coprime compositions.
A333228 ranks compositions whose distinct parts are pairwise coprime.
A337461 counts pairwise coprime 3-part compositions.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n,{3}],CoprimeQ@@Union[#]&]],{n,0,100}]

Formula

For n > 0, a(n) = A337600(n) - A079978(n).

A058933 Let k be bigomega(n) (i.e., n is a k-almost-prime). a(n) = number of k-almost-primes <= n.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 3, 4, 5, 2, 6, 5, 6, 1, 7, 3, 8, 4, 7, 8, 9, 2, 9, 10, 5, 6, 10, 7, 11, 1, 11, 12, 13, 3, 12, 14, 15, 4, 13, 8, 14, 9, 10, 16, 15, 2, 17, 11, 18, 12, 16, 5, 19, 6, 20, 21, 17, 7, 18, 22, 13, 1, 23, 14, 19, 15, 24, 16, 20, 3, 21, 25, 17, 18, 26, 19, 22, 4, 8, 27, 23
Offset: 1

Views

Author

Naohiro Nomoto, Jan 11 2001

Keywords

Comments

Equivalently, the number of positive integers less than or equal to n with the same number of prime factors as n, counted with multiplicity. - Gus Wiseman, Dec 28 2018
There is a close relationship between a(n) and a(n^2). See A209934 for an exploratory quantification. - Peter Munn, Aug 04 2019

Examples

			3 is prime, so a(3)=2. 10 is 2-almost prime (semiprime), so a(10)=4.
From _Gus Wiseman_, Dec 28 2018: (Start)
Column n lists the a(n) positive integers less than or equal to n with the same number of prime factors as n, counted with multiplicity:
  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20
  ---------------------------------------------------------------------
  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20
        2     3  4  5     6  9   7   8   11  10  14      13  12  17  18
              2     3     4  6   5       7   9   10      11  8   13  12
                    2        4   3       5   6   9       7       11  8
                                 2       3   4   6       5       7
                                         2       4       3       5
                                                         2       3
                                                                 2
(End)
		

Crossrefs

Positions of 1's are A000079.
Equivalent sequence restricted to squarefree numbers: A340313.

Programs

  • Maple
    p:= proc() 0 end:
    a:= proc(n) option remember; local t;
          t:= numtheory[bigomega](n);
          p(t):= p(t)+1
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Oct 09 2015
  • Mathematica
    p[] = 0; a[n] := a[n] = Module[{t}, t = PrimeOmega[n]; p[t] = p[t]+1]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jan 24 2017, after Alois P. Heinz *)
  • PARI
    a(n) = my(k=bigomega(n)); sum(i=1, n, bigomega(i)==k); \\ Michel Marcus, Jun 27 2024
    
  • Python
    from math import prod, isqrt
    from sympy import isprime, primepi, primerange, integer_nthroot, primeomega
    def A058933(n):
        if n==1: return 1
        if isprime(n): return primepi(n)
        def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
        return int(sum(primepi(n//prod(c[1] for c in a))-a[-1][0] for a in g(n,0,1,1,primeomega(n)))) # Chai Wah Wu, Aug 28 2024

Formula

Ordinal transform of A001222 (bigomega). - Franklin T. Adams-Watters, Aug 28 2006
If a(n) < a(3^A001222(2n)) = A078843(A001222(2n)) then a(2n) = a(n), otherwise a(2n) > a(n). - Peter Munn, Aug 05 2019

Extensions

Name edited by Peter Munn, Dec 30 2022

A064839 List the natural numbers starting a new row only with each new least prime signature (A025487). a(n) is the column position associated with n.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 4, 1, 2, 2, 5, 1, 6, 3, 4, 1, 7, 2, 8, 3, 5, 6, 9, 1, 3, 7, 2, 4, 10, 1, 11, 1, 8, 9, 10, 1, 12, 11, 12, 2, 13, 2, 14, 5, 6, 13, 15, 1, 4, 7, 14, 8, 16, 3, 15, 4, 16, 17, 17, 1, 18, 18, 9, 1, 19, 3, 19, 10, 20, 4, 20, 1, 21, 21, 11, 12, 22, 5, 22, 2, 2, 23, 23, 2, 24, 25, 26
Offset: 1

Views

Author

Alford Arnold, Oct 24 2001

Keywords

Comments

Row 2 records the primes (A000040). Rows 3 and 4 record the semiprimes (A001358). Rows 5, 6 and 9 record the 3-almost primes (A014612) etc. A058933 is a similar sequence based on k-almost primes.
The graph of this sequence is interesting for large n because it shows multiple curves, one for each prime signature. For example, the six highest curves on the graph of a(n) for n up to 10^4 are for the (1,1), (1,1,1), (1), (2,1,1), (2,1), and (1,1,1,1) prime signatures. The (1) curve dominates until n=58; the (1,1) curve dominates until n=1279786, when the (1,1,1) curve intersects the (1,1) curve. Each (1,1,...,1) curve dominates for a finite number of n.
Ordinal transform of A101296. - Antti Karttunen, May 15 2017
a(n) is the number of positive integers up to n with the same prime signature as n. For example, the a(20) = 3 numbers are {12, 18, 20}. - Gus Wiseman, Jul 08 2019
Ordinal transform of A046523. - Alois P. Heinz, May 31 2020

Examples

			The list begins as follows:
1
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 ...
4 9 25 49 ...
6 10 14 15 21 22 26 33 34 35 38 39 46 51 ...
8 27 ...
12 18 20 28 44 45 50 52 ...
16 ...
Note: the above array, without the initial 1, is given by A095904 (and its transpose A179216). - _Antti Karttunen_, May 15 2017
		

Crossrefs

Programs

  • Maple
    p:= proc() 0 end:
    a:= proc(n) option remember; local t; a(n-1);
          t:= (l-> mul(ithprime(i)^l[i], i=1..nops(l)))(
               sort(map(i-> i[2], ifactors(n)[2]), `>`));
          p(t):= p(t)+1
        end: a(0):=0:
    seq(a(n), n=1..100);  # Alois P. Heinz, May 31 2020
  • Mathematica
    prisig[n_]:=If[n==1,{},Sort[Last/@FactorInteger[n]]];
    Table[Count[Array[prisig,n],prisig[n]],{n,30}] (* Gus Wiseman, Jul 08 2019 *)

Extensions

More terms from Naohiro Nomoto, Oct 31 2001

A074969 Numbers with six distinct prime divisors.

Original entry on oeis.org

30030, 39270, 43890, 46410, 51870, 53130, 60060, 62790, 66990, 67830, 71610, 72930, 78540, 79170, 81510, 82110, 84630, 85470, 87780, 90090, 91770, 92820, 94710, 98670, 99330, 101010, 102102, 103530, 103740, 106260, 106590, 108570
Offset: 1

Views

Author

Zak Seidov, Oct 04 2002

Keywords

Comments

The smallest number with six distinct prime divisors is the product of the first six primes, 2*3*5*7*11 = 30030.
The smallest number with seven distinct prime divisors is the product of the first seven primes, 2*3*5*7*11*13 = 390390.

Examples

			60060 is a term because 60060 = 2^2*3*5*7*11*13 with six distinct prime divisors 2, 3, 5, 7, 11, 13
87780 is a term because 87780 = 2^2*3*5*7*11*19 with six distinct prime divisors 2, 3, 5, 7, 11, 19.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0,5*8! ],Length[FactorInteger[ # ]]==6&] (* Vladimir Joseph Stephan Orlovsky, Apr 22 2010 *)
  • PARI
    is(n)=omega(n)==6 \\ Charles R Greathouse IV, Jun 19 2016
    
  • PARI
    A246655(lim)=my(v=List(primes([2,lim\=1]))); for(e=2,logint(lim,2), forprime(p=2,sqrtnint(lim,e), listput(v,p^e))); Set(v)
    list(lim,pr=6)=if(pr==1, return(A246655(lim))); my(v=List(),pr1=pr-1,mx=prod(i=1,pr1,prime(i))); forprime(p=prime(pr),lim\mx, my(u=list(lim\p,pr1)); for(i=1,#u,listput(v,p*u[i]))); Set(v) \\ Charles R Greathouse IV, Feb 03 2023

Formula

{n : A001221(n) = 6} . - R. J. Mathar, Jul 07 2012

A337453 Numbers k such that the k-th composition in standard order is an ordered triple of distinct positive integers.

Original entry on oeis.org

37, 38, 41, 44, 50, 52, 69, 70, 81, 88, 98, 104, 133, 134, 137, 140, 145, 152, 161, 176, 194, 196, 200, 208, 261, 262, 265, 268, 274, 276, 289, 290, 296, 304, 321, 324, 328, 352, 386, 388, 400, 416, 517, 518, 521, 524, 529, 530, 532, 536, 545, 560, 577, 578
Offset: 1

Views

Author

Gus Wiseman, Sep 07 2020

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding triples begins:
     37: (3,2,1)    140: (4,1,3)    289: (3,5,1)
     38: (3,1,2)    145: (3,4,1)    290: (3,4,2)
     41: (2,3,1)    152: (3,1,4)    296: (3,2,4)
     44: (2,1,3)    161: (2,5,1)    304: (3,1,5)
     50: (1,3,2)    176: (2,1,5)    321: (2,6,1)
     52: (1,2,3)    194: (1,5,2)    324: (2,4,3)
     69: (4,2,1)    196: (1,4,3)    328: (2,3,4)
     70: (4,1,2)    200: (1,3,4)    352: (2,1,6)
     81: (2,4,1)    208: (1,2,5)    386: (1,6,2)
     88: (2,1,4)    261: (6,2,1)    388: (1,5,3)
     98: (1,4,2)    262: (6,1,2)    400: (1,3,5)
    104: (1,2,4)    265: (5,3,1)    416: (1,2,6)
    133: (5,2,1)    268: (5,1,3)    517: (7,2,1)
    134: (5,1,2)    274: (4,3,2)    518: (7,1,2)
    137: (4,3,1)    276: (4,2,3)    521: (6,3,1)
		

Crossrefs

6*A001399(n - 6) = 6*A069905(n - 3) = 6*A211540(n - 1) counts these compositions.
A007304 is an unordered version.
A014311 is the non-strict version.
A337461 counts the coprime case.
A000217(n - 2) counts 3-part compositions.
A001399(n - 3) = A069905(n) = A211540(n + 2) counts 3-part partitions.
A001399(n - 6) = A069905(n - 3) = A211540(n - 1) counts strict 3-part partitions.
A014612 ranks 3-part partitions.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],Length[stc[#]]==3&&UnsameQ@@stc[#]&]

Formula

These triples are counted by 6*A001399(n - 6) = 6*A069905(n - 3) = 6*A211540(n - 1).
Intersection of A014311 and A233564.

A110187 3-almost primes p * q * r relatively prime to p+q+r.

Original entry on oeis.org

12, 20, 28, 44, 45, 52, 63, 68, 75, 76, 92, 99, 116, 117, 124, 147, 148, 153, 164, 165, 171, 172, 175, 188, 207, 212, 236, 244, 245, 261, 268, 273, 275, 279, 284, 292, 316, 325, 332, 333, 345, 356, 363, 369, 385, 387, 388, 399, 404, 412, 423, 425, 428, 435
Offset: 1

Views

Author

Jonathan Vos Post, Jul 15 2005

Keywords

Comments

A110188 is the converse, 3-almost primes p * q * r not relatively prime to p+q+r.

Examples

			a(1) = 12 because 12 = 2^2 * 3, which is relatively prime to 2 + 2 + 3 = 7.
30 is not in the sequence, since 30 = 2 * 3 * 5, which is in fact divisible by 2 + 3 + 5 = 10.
92 is in the sequence since 92 = 2^2 x 23, 2 + 2 + 23 = 27 = 3^3, (92, 27) = 1.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[500],PrimeOmega[#]==3&&CoprimeQ[#,Total[Times @@@ FactorInteger[ #]]]&] (* Harvey P. Dale, May 15 2019 *)
  • PARI
    list(lim)=my(v=List()); forprime(p=2,lim\4, forprime(q=2,min(p,lim\2\p), my(pq=p*q,t); forprime(r=2,min(lim\pq,q), t=r*pq; if(gcd(t,p+q+r)==1, listput(v,t))))); Set(v) \\ Charles R Greathouse IV, Jan 31 2017

Extensions

Extended by Ray Chandler, Jul 20 2005
Previous Showing 91-100 of 304 results. Next