cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 194 results. Next

A216228 Square array T, read by antidiagonals: T(n,k) = 0 if n-k>=1 or if k-n>=3, T(0,0) = T(0,1) = T(0,2) = 1, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 32
Offset: 0

Views

Author

Philippe Deléham, Mar 13 2013

Keywords

Comments

An arithmetic hexagon of E. Lucas.

Examples

			Square array begins:
1, 1, 1, 0, 0,  0,  0,  0, ... row n=0
0, 1, 2, 2, 0,  0,  0,  0, ... row n=1
0, 0, 2, 4, 4,  0,  0,  0, ... row n=2
0, 0, 0, 4, 8,  8,  0,  0, ... row n=3
0, 0, 0, 0, 8, 16, 16,  0, ... row n=4
0, 0, 0, 0, 0, 16, 32, 32, ... row n=5
...
		

References

  • E. Lucas, Théorie des nombres, Albert Blanchard, Paris 1958, Tome 1, p.89

Crossrefs

Formula

T(n,n) = A011782(n).
T(n,n+1) = T(n,n+2) = 2^n = A000079(n).
Sum_{k, 0<=k<=n} T(n-k,k) = A016116(n).
Sum_{n, n>=0} T(n,k) = A084215(k).
Sum_{k, k>=0} T(n,k) = A084215(n+1), n>=1.

A240284 T(n,k)=Number of nXk 0..3 arrays with no element equal to one plus the sum of elements to its left or two plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

1, 2, 2, 2, 8, 3, 4, 19, 19, 4, 4, 76, 80, 38, 7, 8, 181, 570, 262, 114, 10, 8, 741, 2574, 3457, 1461, 251, 15, 16, 1779, 20764, 28654, 33183, 5443, 612, 24, 16, 7308, 97348, 443168, 484146, 218658, 24490, 1656, 35, 32, 17561, 802835, 3980245, 13490093, 5646644
Offset: 1

Views

Author

R. H. Hardin, Apr 03 2014

Keywords

Comments

Table starts
..1....2.......2.........4............4.............8..............8
..2....8......19........76..........181...........741...........1779
..3...19......80.......570.........2574.........20764..........97348
..4...38.....262......3457........28654........443168........3980245
..7..114....1461.....33183.......484146......13490093......224906182
.10..251....5443....218658......5646644.....281488213.....8597299482
.15..612...24490...1851080.....88953626....8199368365...463717321235
.24.1656..117962..15760838...1357879302..225885684501.23104690637116
.35.3758..459193.110599613..17350066110.5291794810655
.54.9630.2147788.945852472.272318368893

Examples

			Some solutions for n=4 k=4
..3..1..3..3....3..3..1..1....3..1..3..3....3..1..3..1....3..1..3..1
..3..1..3..2....3..2..1..2....3..1..0..0....3..2..0..1....2..2..2..0
..3..1..3..2....2..0..2..2....2..2..2..0....3..2..3..2....2..0..0..1
..2..2..2..0....3..1..0..0....3..1..0..0....2..2..3..3....3..3..0..2
		

Crossrefs

Column 1 is A159288
Row 1 is A016116

Formula

Empirical for column k:
k=1: a(n) = a(n-2) +2*a(n-3)
k=2: [order 15]
Empirical for row n:
n=1: a(n) = 2*a(n-2)
n=2: a(n) = 12*a(n-2) -24*a(n-4) +31*a(n-6) -16*a(n-8)
n=3: [order 48] for n>51

A240295 T(n,k)=Number of nXk 0..3 arrays with no element equal to zero plus the sum of elements to its left or two plus the sum of the elements above it or two plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

2, 4, 2, 8, 6, 4, 16, 26, 24, 4, 32, 90, 206, 56, 8, 64, 340, 1322, 974, 230, 8, 128, 1194, 9970, 12164, 8064, 552, 16, 256, 4424, 63892, 180886, 200864, 38252, 2270, 16, 512, 15766, 459420, 2228098, 5967512, 1867678, 316962, 5456, 32, 1024, 57754, 2983714
Offset: 1

Views

Author

R. H. Hardin, Apr 03 2014

Keywords

Comments

Table starts
..2.....4........8..........16............32.............64............128
..2.....6.......26..........90...........340...........1194...........4424
..4....24......206........1322..........9970..........63892.........459420
..4....56......974.......12164........180886........2228098.......31650312
..8...230.....8064......200864.......5967512......144185218.....4068505132
..8...552....38252.....1867678.....109846410.....5231971212...293426742772
.16..2270...316962....31042576....3655313420...346662397488.38864331960018
.16..5456..1502948...289075166...67561324734.12734002906536
.32.22416.12468758..4812019390.2255342381120
.32.53864.59122266.44835430372

Examples

			Some solutions for n=4 k=4
..3..1..1..3....3..1..1..0....3..1..1..0....1..3..3..1....1..0..0..0
..3..2..2..0....3..0..0..0....3..2..2..1....1..0..2..0....1..0..3..3
..3..2..0..0....1..0..2..0....1..0..2..2....1..2..0..1....3..0..2..0
..1..2..0..2....3..0..0..0....3..0..2..3....3..2..0..2....1..3..2..3
		

Crossrefs

Column 1 is A016116(n+1)
Row 1 is A000079

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-2)
k=2: a(n) = 12*a(n-2) -24*a(n-4) +31*a(n-6) -16*a(n-8) for n>9
k=3: [order 48] for n>50
Empirical for row n:
n=1: a(n) = 2*a(n-1)
n=2: [order 12]
n=3: [order 80] for n>81

A240394 T(n,k)=Number of nXk 0..3 arrays with no element equal to zero plus the sum of elements to its left or one plus the sum of the elements above it or two plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

1, 1, 2, 1, 5, 2, 1, 7, 12, 4, 1, 9, 32, 50, 4, 1, 11, 62, 258, 120, 8, 1, 13, 118, 954, 1232, 493, 8, 1, 15, 206, 3064, 8656, 10291, 1184, 16, 1, 17, 351, 9075, 50756, 142016, 48826, 4863, 16, 1, 19, 568, 27120, 263816, 1568581, 1314136, 405404, 11684, 32, 1, 21, 882
Offset: 1

Views

Author

R. H. Hardin, Apr 04 2014

Keywords

Comments

Table starts
..1.....1........1..........1............1.............1.............1
..2.....5........7..........9...........11............13............15
..2....12.......32.........62..........118...........206...........351
..4....50......258........954.........3064..........9075.........27120
..4...120.....1232.......8656........50756........263816.......1378418
..8...493....10291.....142016......1568581......14958462.....138422394
..8..1184....48826....1314136.....27938412.....502139307....8505203924
.16..4863...405404...21792634....910553970...31597696508.1003858789731
.16.11684..1922824..202647943..16647316316.1127672103190
.32.47994.15957927.3370994234.551914186148

Examples

			Some solutions for n=4 k=4
..3..0..0..0....3..0..0..0....3..0..0..0....3..0..0..0....3..0..0..0
..1..0..3..3....1..0..0..3....1..3..3..0....1..0..0..0....3..2..0..0
..3..0..2..2....3..0..2..3....3..1..3..2....3..0..2..0....1..2..2..3
..3..0..1..1....1..3..2..0....1..2..2..2....3..0..2..0....3..2..2..2
		

Crossrefs

Column 1 is A016116

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-2)
k=2: a(n) = 12*a(n-2) -24*a(n-4) +31*a(n-6) -16*a(n-8)
k=3: [order 48] for n>49
Empirical for row n:
n=1: a(n) = 1
n=2: a(n) = 2*n + 1 for n>1
n=3: a(n) = (1/6)*n^4 - (5/6)*n^3 + (13/3)*n^2 + (31/3)*n - 48 for n>5
n=4: [polynomial of degree 14] for n>13
n=5: [polynomial of degree 44] for n>38

A056503 Number of periodic palindromic structures of length n using a maximum of two different symbols.

Original entry on oeis.org

1, 2, 2, 4, 4, 7, 8, 14, 16, 26, 32, 51, 64, 100, 128, 198, 256, 392, 512, 778, 1024, 1552, 2048, 3091, 4096, 6176, 8192, 12324, 16384, 24640, 32768, 49222, 65536, 98432, 131072, 196744, 262144, 393472, 524288, 786698, 1048576, 1573376, 2097152, 3146256, 4194304
Offset: 1

Views

Author

Keywords

Comments

For example, aaabbb is not a (finite) palindrome but it is a periodic palindrome. Permuting the symbols will not change the structure.
A periodic palindrome is just a necklace that is equivalent to its reverse. The number of binary periodic palindromes of length n is given by A164090(n). A binary periodic palindrome can only be equivalent to its complement when there are an equal number of 0's and 1's. - Andrew Howroyd, Sep 29 2017
Number of cyclic compositions (necklaces of positive integers) summing to n that can be rotated to form a palindrome. - Gus Wiseman, Sep 16 2018

Examples

			From _Gus Wiseman_, Sep 16 2018: (Start)
The sequence of palindromic cyclic compositions begins:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (111)  (22)    (113)    (33)      (115)
                    (112)   (122)    (114)     (133)
                    (1111)  (11111)  (222)     (223)
                                     (1122)    (11113)
                                     (11112)   (11212)
                                     (111111)  (11122)
                                               (1111111)
(End)
		

References

  • M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

Crossrefs

Programs

  • Mathematica
    (* b = A164090, c = A045674 *)
    b[n_] := (1/4)*(7 - (-1)^n)*2^((1/4)*(2*n + (-1)^n - 1));
    c[0] = 1; c[n_] := c[n] = If[EvenQ[n], 2^(n/2-1) + c[n/2], 2^((n-1)/2)];
    a[n_?OddQ] := b[n]/2; a[n_?EvenQ] := (1/2)*(b[n] + c[n/2]);
    Array[a, 45] (* Jean-François Alcover, Oct 08 2017, after Andrew Howroyd *)
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Function[q,And[Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And],Array[SameQ[RotateRight[q,#],Reverse[RotateRight[q,#]]]&,Length[q],1,Or]]]]],{n,15}] (* Gus Wiseman, Sep 16 2018 *)

Formula

a(2n+1) = A164090(2n+1)/2 = 2^n, a(2n) = (A164090(2n) + A045674(n))/2. - Andrew Howroyd, Sep 29 2017

Extensions

a(17)-a(45) from Andrew Howroyd, Apr 07 2017

A060656 a(n) = 2*a(n-1)*a(n-2)/a(n-3), with a(0)=a(1)=1.

Original entry on oeis.org

1, 1, 2, 4, 16, 64, 512, 4096, 65536, 1048576, 33554432, 1073741824, 68719476736, 4398046511104, 562949953421312, 72057594037927936, 18446744073709551616, 4722366482869645213696, 2417851639229258349412352
Offset: 0

Views

Author

Henry Bottomley, Apr 18 2001

Keywords

Comments

a(n+1) is the Hankel transform of A135052. - Paul Barry, Nov 15 2007
a(n+1) is the Hankel transform of the aerated large Schroeder numbers. a(n) and a(n+1) both satisfy the trivial Somos-4 recurrence u(n)=4*u(n-2)^2/u(n-4). Associated with the elliptic curve y^2=1-6x^2+x^4 via Schroeder numbers. - Paul Barry, Dec 08 2009
Hankel transform of A089324. - Paul Barry, Mar 01 2010
a(n+1) is the number of n X n binary matrices that are symmetric about both diagonals (bisymmetric). For the derivation of this result, see the link below. - Dennis P. Walsh, Apr 03 2014
1 followed by {a(n-1)}A078495).%20-%20_Vladimir%20Shevelev">(n>=1) is the Somos-3 sequence: b(0)=b(1)=b(2)=1;for n>=3, b(n)=2*b(n-1)*b(n-2)/b(n-3) (cf. comment in A078495). - _Vladimir Shevelev, Apr 20 2016
If the Hankel transform is defined as in the link 'Sequence transformations' then a(n) is the Hankel transform of A151374. - Peter Luschny, Nov 30 2016

Examples

			a(6) = 2*64*16/4 = 512.
G.f. = 1 + x + 2*x^2 + 4*x^3 + 16*x^4 + 64*x^5 + 512*x^6 + 4096*x^7 + ...
		

Crossrefs

Programs

  • Maple
    A060656:=n->2^floor(n^2/4); seq(A060656(n), n=0..20); # Wesley Ivan Hurt, Apr 30 2014
  • Mathematica
    a[ n_] := 2^Quotient[n^2, 4]; (* Michael Somos, Jan 24 2014 *)
    nxt[{a_,b_,c_}]:={b,c,(2c*b)/a}; NestList[nxt,{1,1,2},20][[All,1]] (* Harvey P. Dale, Nov 26 2017 *)
  • PARI
    { for (n=0, 100, write("b060656.txt", n, " ", 2^(n^2\4)); ) } \\ Harry J. Smith, Jul 09 2009
    
  • PARI
    {a(n) = 2^(n^2\4)}; /* Michael Somos, Jan 24 2014 */

Formula

a(n) = 2^floor( n^2/4 ) = a(n - 1) * 2^floor( n/2 ) = a(n - 2) * 2^(n - 1) = a(n - 1) * A016116(n) = 2^A002620(n).
0 = a(n) * a(n+3) + a(n+1) * ( -2*a(n+2) ) for all n in Z. - Michael Somos, Jan 24 2014
0 = a(n) * a(n+4) + a(n+2) * ( -4*a(n+2) ) for all n in Z. - Michael Somos, Jan 24 2014

A068913 Square array read by antidiagonals of number of k step walks (each step +-1 starting from 0) which are never more than n or less than -n.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 2, 2, 1, 0, 4, 4, 2, 1, 0, 4, 6, 4, 2, 1, 0, 8, 12, 8, 4, 2, 1, 0, 8, 18, 14, 8, 4, 2, 1, 0, 16, 36, 28, 16, 8, 4, 2, 1, 0, 16, 54, 48, 30, 16, 8, 4, 2, 1, 0, 32, 108, 96, 60, 32, 16, 8, 4, 2, 1, 0, 32, 162, 164, 110, 62, 32, 16, 8, 4, 2, 1, 0, 64, 324, 328, 220, 124, 64, 32, 16, 8, 4, 2, 1
Offset: 0

Views

Author

Henry Bottomley, Mar 06 2002

Keywords

Examples

			Rows start:
  1,  0,  0,  0,  0, ...
  1,  2,  2,  4,  4, ...
  1,  2,  4,  6, 12, ...
  1,  2,  4,  8, 14, ...
  ...
		

Crossrefs

Cf. early rows: A000007, A016116 (without initial term), A068911, A068912, A216212, A216241, A235701.
Central and lower diagonals are A000079, higher diagonals include A000918, A028399.

Programs

  • Mathematica
    T[n_,0]=1; T[n_,k_]:=2^k/(n+1) Sum[(-1)^r Cos[(Pi (2r-1))/(2 (n+1))]^k Cot[(Pi (1-2r))/(4 (n+1))],{r,1,n+1}]; Table[T[r,n-r],{n,0,20},{r,0,n}]//Round//Flatten (* Herbert Kociemba, Sep 23 2020 *)

Formula

Starting with T(n, 0) = 1, if (k-n) is negative or even then T(n, k) = 2*T(n, k-1), otherwise T(n, k) = 2*T(n, k-1) - A061897(n+1, (k-n-1)/2). So for n>=k, T(n, k) = 2^k. [Corrected by Sean A. Irvine, Mar 23 2024]
T(n,0) = 1, T(n,k) = (2^k/(n+1))*Sum_{r=1..n+1} (-1)^r*cos((Pi*(2*r-1))/(2*(n+1)))^k*cot((Pi*(1-2*r))/(4*(n+1))). - Herbert Kociemba, Sep 23 2020

A164298 a(n) = ((1+4*sqrt(2))*(2+sqrt(2))^n + (1-4*sqrt(2))*(2-sqrt(2))^n)/2.

Original entry on oeis.org

1, 10, 38, 132, 452, 1544, 5272, 18000, 61456, 209824, 716384, 2445888, 8350784, 28511360, 97343872, 332352768, 1134723328, 3874187776, 13227304448, 45160842240, 154188760064, 526433355776, 1797355902976, 6136556900352, 20951515795456, 71532949381120
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Aug 12 2009

Keywords

Comments

Binomial transform of A048696. Second binomial transform of A164587. Inverse binomial transform of A164299.
This sequence is part of a class of sequences defined by the recurrence a(n,m) = 2*(m+1)*a(n-1,m) - ((m+1)^2 - 2)*a(n-2,m) with a(0) = 1 and a(1) = m+9. The generating function is Sum_{n>=0} a(n,m)*x^n = (1 - (m-7)*x)/(1 - 2*(m+1)*x + ((m+1)^2 - 2)*x^2) and has a series expansion in terms of Pell-Lucas numbers defined by a(n, m) = (1/2)*Sum_{k=0..n} binomial(n,k)*m^(n-k)*(5*Q(k) + 4*Q(k-1)). - G. C. Greubel, Mar 12 2021

Crossrefs

Sequences in the class a(n, m): this sequence (m=1), A164299 (m=2), A164300 (m=3), A164301 (m=4), A164598 (m=5), A164599 (m=6), A081185 (m=7), A164600 (m=8).
Cf. A016116(n+1).

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((1+4*r)*(2+r)^n+(1-4*r)*(2-r)^n)/2: n in [0..27] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 17 2009
    
  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1+6*x)/(1-4*x+2*x^2) )); // G. C. Greubel, Dec 14 2018
    
  • Maple
    a:=n->((1+4*sqrt(2))*(2+sqrt(2))^n+(1-4*sqrt(2))*(2-sqrt(2))^n)/2: seq(floor(a(n)),n=0..25); # Muniru A Asiru, Dec 15 2018
  • Mathematica
    LinearRecurrence[{4,-2}, {1,10}, 50] (* or *) CoefficientList[Series[(1 + 6*x)/(1 - 4*x + 2*x^2), {x,0,50}], x] (* G. C. Greubel, Sep 12 2017 *)
  • PARI
    my(x='x+O('x^50)); Vec((1+6*x)/(1-4*x+2*x^2)) \\ G. C. Greubel, Sep 12 2017
    
  • Sage
    [( (1+6*x)/(1-4*x+2*x^2) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Dec 14 2018; Mar 12 2021

Formula

a(n) = 4*a(n-1) - 2*a(n-2) for n > 1; a(0)=1, a(1)=10.
G.f.: (1+6*x)/(1-4*x+2*x^2).
E.g.f.: (cosh(sqrt(2)*x) + 4*sqrt(2)*sinh(sqrt(2)*x))*exp(2*x). - G. C. Greubel, Sep 12 2017
From G. C. Greubel, Mar 12 2021: (Start)
a(n) = A056236(n) + 8*A007070(n-1).
a(n) = (1/2)*Sum_{k=0..n} binomial(n,k)*(5*Q(k) + 4*Q(k-1)), where Q(n) = Pell-Lucas(n) = A002203(n). (End)

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Aug 17 2009

A240381 T(n,k)=Number of nXk 0..3 arrays with no element equal to zero plus the sum of elements to its left or two plus the sum of the elements above it or zero plus the sum of the elements diagonally to its northwest, modulo 4.

Original entry on oeis.org

2, 2, 4, 4, 10, 10, 4, 38, 44, 22, 8, 90, 330, 148, 50, 8, 366, 1494, 2066, 636, 114, 16, 878, 12234, 17550, 16994, 2430, 258, 16, 3606, 57722, 279886, 281186, 116030, 9648, 586, 32, 8666, 477574, 2545618, 8802558, 3502886, 884792, 37946, 1330, 32, 35602
Offset: 1

Views

Author

R. H. Hardin, Apr 04 2014

Keywords

Comments

Table starts
....2......2.........4............4.............8..............8.............16
....4.....10........38...........90...........366............878...........3606
...10.....44.......330.........1494.........12234..........57722.........477574
...22....148......2066........17550........279886........2545618.......41758418
...50....636.....16994.......281186.......8802558......157432290.....5145703760
..114...2430....116030......3502886.....207932244.....7149227810...457988195982
..258...9648....884792.....52375114....6169009514...422227556156.54164128056204
..586..37946...6273952....672652728..148090588518.19320096061230
.1330.149336..46648918...9771038498.4275011910288
.3018.588102.335571098.127878632630

Examples

			Some solutions for n=4 k=4
..1..3..1..3....3..1..1..3....3..1..3..1....3..1..3..1....1..3..1..3
..1..3..1..3....3..0..2..0....3..1..2..1....3..0..2..0....1..2..2..2
..1..2..1..1....3..2..0..2....3..2..2..2....1..0..0..0....1..2..0..0
..3..0..0..2....2..0..0..0....1..0..0..0....2..0..1..2....2..3..2..1
		

Crossrefs

Column 1 is A078040
Row 1 is A016116(n+1)

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +2*a(n-2) +2*a(n-3)
k=2: [order 14] for n>15
Empirical for row n:
n=1: a(n) = 2*a(n-2)
n=2: a(n) = 12*a(n-2) -24*a(n-4) +31*a(n-6) -16*a(n-8)
n=3: [order 48] for n>50

A305749 T(n,k) is the number of achiral color patterns (set partitions) in a row or loop of length n with k or fewer colors (sets).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 4, 1, 1, 2, 3, 6, 4, 1, 1, 2, 3, 7, 9, 8, 1, 1, 2, 3, 7, 11, 18, 8, 1, 1, 2, 3, 7, 12, 27, 27, 16, 1, 1, 2, 3, 7, 12, 30, 43, 54, 16, 1, 1, 2, 3, 7, 12, 31, 55, 107, 81, 32, 1, 1, 2, 3, 7, 12, 31, 58, 141, 171, 162, 32, 1, 1, 2, 3, 7, 12, 31, 59, 159, 266, 427, 243, 64, 1, 1, 2, 3, 7, 12, 31, 59, 163, 312, 688, 683, 486, 64, 1
Offset: 1

Views

Author

Robert A. Russell, Jun 09 2018

Keywords

Comments

An equivalent color pattern is obtained when we permute the colors. Thus all permutations of ABC are equivalent, as are AAABB and BBBAA. A color pattern is achiral if it is equivalent to its reversal. Rotations of the colors of a loop are equivalent, so for loops AAABCB = BAAABC = CBAAAB.

Examples

			The array begins at T(1,1):
1  1   1    1    1     1     1     1     1     1     1     1     1 ...
1  2   2    2    2     2     2     2     2     2     2     2     2 ...
1  2   3    3    3     3     3     3     3     3     3     3     3 ...
1  4   6    7    7     7     7     7     7     7     7     7     7 ...
1  4   9   11   12    12    12    12    12    12    12    12    12 ...
1  8  18   27   30    31    31    31    31    31    31    31    31 ...
1  8  27   43   55    58    59    59    59    59    59    59    59 ...
1 16  54  107  141   159   163   164   164   164   164   164   164 ...
1 16  81  171  266   312   334   338   339   339   339   339   339 ...
1 32 162  427  688   883   963   993   998   999   999   999   999 ...
1 32 243  683 1313  1774  2069  2169  2204  2209  2210  2210  2210 ...
1 64 486 1707 3407  5103  6119  6634  6789  6834  6840  6841  6841 ...
1 64 729 2731 6532 10368 13524 15080 15790 15975 16026 16032 16033 ...
a(n) are the terms of this array read by antidiagonals.
For T(4,3)=6, the achiral pattern rows are AAAA, AABB, ABAB, ABBA, ABBC, and ABCA. The achiral pattern loops are AAAA, AAAB, AABB, ABAB, AABC, and ABAC.
		

Crossrefs

Columns 1-6 are A057427, A016116, A182522, A305750, A305751, and A305752.
Columns converge to the right to A080107.

Programs

  • Mathematica
    Ach[n_, k_] := Ach[n,k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] +
      Ach[n-2,k-1] + Ach[n-2,k-2]]; (* A304972 *)
    Table[Sum[Ach[n, j], {j, 1, k - n + 1}], {k, 1, 15}, {n, 1, k}] // Flatten

Formula

T(n,k) = Sum_{j=0..k} Ach(n,j), where Ach(n,k) = [n>1] * (k*T(n-2,k) + T(n-2,k-1) + T(n-2,k-2)) + [0 <= n <= 1 & n==k].
T(n,k) = Sum_{j=1..k} A304972(n,j).
Previous Showing 71-80 of 194 results. Next