A190542
a(n) = 7^n - 4^n.
Original entry on oeis.org
0, 3, 33, 279, 2145, 15783, 113553, 807159, 5699265, 40091463, 281426673, 1973132439, 13824509985, 96821901543, 677954637393, 4746487768119, 33228635602305, 232613334118023, 1628344878433713, 11398620307466199, 79791166785984225, 558541466036772903, 3909803456396943633, 27368676971336738679, 191580949905589703745
Offset: 0
-
[7^n -4^n: n in [0..30]];
-
A190542:=n->7^n - 4^n; seq(A190542(n), n=0..30); # Wesley Ivan Hurt, Feb 26 2014
-
Table[7^n - 4^n, {n, 0, 30}] (* Wesley Ivan Hurt, Feb 26 2014 *)
LinearRecurrence[{11,-28},{0,3},30] (* Harvey P. Dale, Dec 21 2019 *)
-
a(n)=7^n-4^n \\ Charles R Greathouse IV, Jun 02 2011
-
def A190542(n): return pow(7,n) - pow(4,n)
print([A190542(n) for n in range(31)]) # G. C. Greubel, Nov 13 2024
A280307
Numbers m such that 7^m - 6^m is not squarefree, but 7^d - 6^d is squarefree for every proper divisor d of m.
Original entry on oeis.org
20, 26, 55, 68, 171, 258, 310
Offset: 1
20 is in this sequence because 7^20 - 6^20 = 43242508113549025 is not squarefree but 7^d - 6^d is squarefree for every proper divisor d of 20 (i.e., for d = 1, 2, 4, 5, and 10): 7^1 - 6^1 = 1, 7^2 - 6^2 = 13, 7^4 - 6^4 = 1105, 7^5 - 6^5 = 13682, 7^10 - 6^10 = 222009013 are all squarefree.
A343237
Triangle T obtained from the array A(n, k) = (k+1)^(n+1) - k^(n+1), n, k >= 0, by reading antidiagonals upwards.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 7, 5, 1, 1, 15, 19, 7, 1, 1, 31, 65, 37, 9, 1, 1, 63, 211, 175, 61, 11, 1, 1, 127, 665, 781, 369, 91, 13, 1, 1, 255, 2059, 3367, 2101, 671, 127, 15, 1, 1, 511, 6305, 14197, 11529, 4651, 1105, 169, 17, 1
Offset: 0
The array A begins:
n\k 0 1 2 3 4 5 6 7 8 9 ...
-------------------------------------------------------------
0: 1 1 1 1 1 1 1 1 1 1 ...
1: 1 3 5 7 9 11 13 15 17 19 ...
2: 1 7 19 37 61 91 127 169 217 271 ...
3: 1 15 65 175 369 671 1105 1695 2465 3439 ...
4: 1 31 211 781 2101 4651 9031 15961 26281 40951 ...
5: 1 63 665 3367 11529 31031 70993 144495 269297 468559 ...
...
The triangle T begins:
n\m 0 1 2 3 4 5 6 7 8 9 10 ...
-------------------------------------------------------------
0: 1
1: 1 1
2: 1 3 1
3: 1 7 5 1
4: 1 15 19 7 1
5: 1 31 65 37 9 1
6: 1 63 211 175 61 11 1
7: 1 127 665 781 369 91 13 1
8: 1 255 2059 3367 2101 671 127 15 1
9: 1 511 6305 14197 11529 4651 1105 169 17 1
10: 1 1023 19171 58975 61741 31031 9031 1695 217 19 1
...
Combinatorial interpretation (cf. A005061 by _Enrique Navarrete_)
The three digits numbers with digits from K ={1, 2, 3, 4} having at least one 4 are:
j=1 (one 4): 114, 141, 411; 224, 242, 422; 334, 343, 433; 124, 214, 142, 241, 412, 421; 134, 314, 143, 341, 413, 431; 234, 243, 423. That is, 3*3 + 3!*3 = 27 = binomial(3, 1)*(4-1)^(3-1) = 3*3^2;
j=2 (twice 4): 144, 414, 441; 244, 424, 442; 344, 434, 443; 3*3 = 9 = binomial(3, 2)*(4-1)^(3-2) = 3*3;
j=3 (thrice 4) 444; 1 = binomial(3, 3)*(4-1)^(3-3).
Together: 27 + 9 + 1 = 37 = A(2, 3) = T(5, 3).
Row sequences of array A (nexus numbers):
A000012,
A005408,
A003215,
A005917(k+1),
A022521,
A022522,
A022523,
A022524,
A022525,
A022526,
A022527,
A022528.
Column sequences of array A:
A000012,
A000225(n+1),
A001047(n+1),
A005061(n+1),
A005060(n+1),
A005062(n+1),
A016169(n+1),
A016177(n+1),
A016185(n+1),
A016189(n+1),
A016195(n+1),
A016197(n+1).
-
egf := exp(exp(x)*y + x)*(exp(x)*y - y + 1): ser := series(egf, x, 12):
cx := n -> series(n!*coeff(ser, x, n), y, 12):
Arow := n -> seq(k!*coeff(cx(n), y, k), k=0..9):
for n from 0 to 5 do Arow(n) od; # Peter Luschny, May 10 2021
-
A[n_, k_] := (k + 1)^(n + 1) - k^(n + 1); Table[A[n - k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, May 10 2021 *)
A020570
Expansion of g.f. 1/((1-6*x)*(1-7*x)*(1-8*x)).
Original entry on oeis.org
1, 21, 295, 3465, 36751, 365001, 3463615, 31794105, 284628751, 2499039081, 21606842335, 184519243545, 1559982264751, 13079717026761, 108915112739455, 901732722577785, 7429565635164751, 60963378722560041, 498496565225842975, 4064108629664292825, 33049477950757248751
Offset: 0
-
m:=20; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-6*x)*(1-7*x)*(1-8*x)))); // Vincenzo Librandi, Jul 04 2013
-
I:=[1, 21, 295]; [n le 3 select I[n] else 21*Self(n-1)-146*Self(n-2)+336*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Jul 04 2013
-
CoefficientList[Series[1/((1-6*x)*(1-7*x)*(1-8*x)), {x, 0, 20}], x] (* Harvey P. Dale, Feb 24 2011 *)
-
my(x='x+O('x^30)); Vec(1/((1-6*x)*(1-7*x)*(1-8*x))) \\ G. C. Greubel, Feb 07 2018
A209901
7^p - 6^p - 2 with p = prime(n).
Original entry on oeis.org
11, 125, 9029, 543605, 1614529685, 83828316389, 215703854542469, 10789535445362645, 26579017117027313525, 3183060102526390833854309, 156448938516521406467644085, 18500229372226631089176131976869, 44487435359130133495783012898708549
Offset: 1
543605 is in the sequence because 543605 = 7^7 - 6^7 - 2, and 7 is prime.
Comments