cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A017224 a(n) = (9*n + 5)^4.

Original entry on oeis.org

625, 38416, 279841, 1048576, 2825761, 6250000, 12117361, 21381376, 35153041, 54700816, 81450625, 116985856, 163047361, 221533456, 294499921, 384160000, 492884401, 623201296, 777796321, 959512576
Offset: 0

Views

Author

Keywords

Crossrefs

Sequences of the form (9*n+5)^k: A017221 (k=1), A017222 (k=2), A017223 (k=3), this sequence (k=4), A017225 (k=5), A017226 (k=6), A017227 (k=7), A017228 (k=8), A017229 (k=9), A017230 (k=10), A017231 (k=11).
Cf. A000583 (n^4).

Programs

Formula

a(n) = A000583(A017221(n)).
From Harvey P. Dale, Apr 27 2016: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: (625 + 35291*x + 94011*x^2 + 27281*x^3 + 256*x^4)/(1-x)^5. (End)
E.g.f.: (625 + 37791*x + 101817*x^2 + 53946*x^3 + 6561*x^4)*exp(x). - G. C. Greubel, Jan 06 2023

A130877 Numbers that are congruent to {0, 5} mod 9.

Original entry on oeis.org

0, 5, 9, 14, 18, 23, 27, 32, 36, 41, 45, 50, 54, 59, 63, 68, 72, 77, 81, 86, 90, 95, 99, 104, 108, 113, 117, 122, 126, 131, 135, 140, 144, 149, 153, 158, 162, 167, 171, 176, 180, 185, 189, 194, 198, 203, 207, 212, 216, 221, 225, 230, 234, 239, 243, 248, 252, 257
Offset: 1

Views

Author

Keywords

Comments

Numbers m such that m = digitsum(k*(m+k)) for some k>=0.
The first differences are 2-periodic: 5, 4, 5, 4, etc. The minimum numbers k associated to the first elements of the sequence are (m,k): (0,0), (5,2), (9,3), (14,5), (18,15), (23,44), (27,42), (32,119), etc.

Crossrefs

Programs

  • Maple
    op(select(n->n mod 9=0 or n mod 9=5,[$0..257])); # Paolo P. Lava, Jul 12 2018
    # second Maple program:
    a:= n-> ceil(9*(n-1)/2):
    seq(a(n), n=1..58);  # Alois P. Heinz, Apr 12 2025
  • Mathematica
    Table[5n-5-Floor[(n-1)/2], {n,100}] (* Wesley Ivan Hurt, Oct 25 2013 *)
    Select[Range[0,300],MemberQ[{0,5},Mod[#,9]]&] (* or *) LinearRecurrence[ {1,1,-1},{0,5,9},60] (* Harvey P. Dale, Aug 04 2019 *)
  • PARI
    forstep(n=0,200,[5,4],print1(n", ")) \\ Charles R Greathouse IV, Oct 17 2011

Formula

a(n) = a(n-2) + 9 for n >= 3.
a(n) = 9/2*(n+1) - 4 + Sum{j=0..n} (-1)^j/2.
O.g.f.: x^2(5+4x)/((1+x)(1-x)^2). a(n) = 9(n-1)/2+(1+(-1)^n)/4. - R. J. Mathar, Jun 13 2008
a(n+1) = Sum_{k>=0} A030308(n,k)*A116453(k+1). - Philippe Deléham, Oct 17 2011
a(n) = 5n - 5 - floor((n-1)/2). - Wesley Ivan Hurt, Oct 25 2013
a(n) = ceiling(9*(n-1)/2). - Alois P. Heinz, Apr 12 2025

A154267 a(n) = 27*n + 15.

Original entry on oeis.org

15, 42, 69, 96, 123, 150, 177, 204, 231, 258, 285, 312, 339, 366, 393, 420, 447, 474, 501, 528, 555, 582, 609, 636, 663, 690, 717, 744, 771, 798, 825, 852, 879, 906, 933, 960, 987, 1014, 1041, 1068, 1095, 1122, 1149, 1176, 1203, 1230, 1257, 1284, 1311, 1338
Offset: 0

Views

Author

Vincenzo Librandi, Jan 06 2009

Keywords

Comments

The identity (81*n^2 + 90*n + 26)^2 - (9*n^2 + 10*n + 3)*(27*n + 15)^2 = 1 can be written as A154277(n+1)^2 - A154254(n+1)*a(n)^2 = 1. - Vincenzo Librandi, Feb 03 2012

Crossrefs

Programs

Formula

G.f.: 3*(5 + 4*x)/(1-x)^2. - R. J. Mathar, Jan 05 2011
a(n) = 3*A017221(n). - R. J. Mathar, Jan 05 2011
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Feb 02 2012
E.g.f.: (27*x + 15)*exp(x). - G. C. Greubel, Sep 08 2016

A155704 Triangle read by rows where T(m,n)=2*m*n + m + n + 10.

Original entry on oeis.org

14, 17, 22, 20, 27, 34, 23, 32, 41, 50, 26, 37, 48, 59, 70, 29, 42, 55, 68, 81, 94, 32, 47, 62, 77, 92, 107, 122, 35, 52, 69, 86, 103, 120, 137, 154, 38, 57, 76, 95, 114, 133, 152, 171, 190, 41, 62, 83, 104, 125, 146, 167, 188, 209, 230, 44, 67, 90, 113, 136, 159, 182
Offset: 1

Views

Author

Vincenzo Librandi, Jan 25 2009

Keywords

Comments

The numbers 2*T(m,n)-19 = (2*m+1)*(2*n+1) are not prime.
First column: A016789, second column: A016873, third column: A017053, fourth column: A017221. - Vincenzo Librandi, Nov 20 2012

Examples

			Triangle begins:
14;
17, 22;
20, 27, 34;
23, 32, 41, 50;
26, 37, 48, 59, 70;
29, 42, 55, 68, 81, 94;
32, 47, 62, 77, 92, 107, 122;
35, 52, 69, 86, 103, 120, 137, 154;
38, 57, 76, 95, 114, 133, 152, 171, 190;
41, 62, 83, 104, 125, 146, 167, 188, 209, 230;
		

Crossrefs

Programs

  • Magma
    [2*n*k + n + k + 10: k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 20 2012
  • Mathematica
    t[n_,k_]:=2 n*k + n + k +  10; Table[t[n, k], {n, 15}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 20 2012 *)

A330613 Triangle read by rows: T(n, k) = 1 + k - 2*n - 2*k*n + 2*n^2, with 0 <= k < n.

Original entry on oeis.org

1, 5, 2, 13, 8, 3, 25, 18, 11, 4, 41, 32, 23, 14, 5, 61, 50, 39, 28, 17, 6, 85, 72, 59, 46, 33, 20, 7, 113, 98, 83, 68, 53, 38, 23, 8, 145, 128, 111, 94, 77, 60, 43, 26, 9, 181, 162, 143, 124, 105, 86, 67, 48, 29, 10, 221, 200, 179, 158, 137, 116, 95, 74, 53, 32, 11
Offset: 1

Views

Author

Stefano Spezia, Dec 20 2019

Keywords

Comments

T(n, k) is the k-th super- and subdiagonal sum of the matrix M(n) whose permanent is A330287(n).

Examples

			n\k|   0   1   2   3   4   5
---+------------------------
1  |   1
2  |   5   2
3  |  13   8   3
4  |  25  18  11   4
5  |  41  32  23  14   5
6  |  61  50  39  28  17   6
...
For n = 3 the matrix M is
      1, 2, 3
      2, 4, 6
      3, 6, 8
and therefore T(3, 0) = 1 + 4 + 8 = 13, T(3, 1) = 2 + 6 = 8 and T(3, 2) = 3.
		

Crossrefs

Cf. A000027: diagonal; A001105: 2nd column; A001844: 1st column; A016789: 1st subdiagonal; A016885: 2nd subdiagonal; A017029: 3rd subdiagonal; A017221: 4th subdiagonal; A017461: 5th subdiagonal; A081436: row sums; A132209: 3rd column; A164284: 7th subdiagonal; A269044: 6th subdiagonal.

Programs

  • Mathematica
    Flatten[Table[1+k-2n-2k*n+2n^2,{n,1,11},{k,0,n-1}]] (* or *)
    r[n_] := Table[SeriesCoefficient[(1-x*(2-5x+2(1+x)y))/((1-x)^3*(1-y)^2), {x, 0, i}, {y, 0, j}], {i, n, n}, {j, 0, n-1}]; Flatten[Array[r, 11]] (* or *)
    r[n_] := Table[SeriesCoefficient[Exp[x+y]*(1+2x(x-y)+y), {x, 0, i}, {y, 0, j}]*i!*j!, {i, n, n}, {j, 0, n-1}]; Flatten[Array[r, 11]]

Formula

O.g.f.: (1 - x*(2 - 5*x + 2*(1 + x)*y))/((1 - x)^3*(1 - y)^2).
E.g.f.: exp(x+y)*(1 + 2*x*(x - y) + y).
T(n, k) = A001844(n-1) - k*A005408(n-1), with 0 <= k < n. [Typo corrected by Stefano Spezia, Feb 14 2020]

A350515 a(n) = (n-1)/3 if n mod 3 = 1; a(n) = n/2 if n mod 6 = 0 or n mod 6 = 2; a(n) = (3n+1)/2 if n mod 6 = 3 or n mod 6 = 5.

Original entry on oeis.org

0, 0, 1, 5, 1, 8, 3, 2, 4, 14, 3, 17, 6, 4, 7, 23, 5, 26, 9, 6, 10, 32, 7, 35, 12, 8, 13, 41, 9, 44, 15, 10, 16, 50, 11, 53, 18, 12, 19, 59, 13, 62, 21, 14, 22, 68, 15, 71, 24, 16, 25, 77, 17, 80, 27, 18, 28, 86, 19, 89, 30, 20, 31, 95, 21, 98, 33, 22, 34, 104
Offset: 0

Views

Author

Paolo Xausa, Jan 02 2022

Keywords

Comments

This is a variant of the Farkas map (A349407).
Yolcu, Aaronson and Heule prove that the trajectory of the iterates of the map starting from any nonnegative integer always reaches 0.
If displayed as a rectangular array with six columns, the columns are A008585, A005843, A016777, A017221, A005408, A017257 (see example). - Omar E. Pol, Jan 02 2022

Examples

			From _Omar E. Pol_, Jan 02 2022: (Start)
Written as a rectangular array with six columns read by rows the sequence begins:
   0,  0,  1,  5,  1,  8;
   3,  2,  4, 14,  3, 17;
   6,  4,  7, 23,  5, 26;
   9,  6, 10, 32,  7, 35;
  12,  8, 13, 41,  9, 44;
  15, 10, 16, 50, 11, 53;
  18, 12, 19, 59, 13, 62;
  21, 14, 22, 68, 15, 71;
  24, 16, 25, 77, 17, 80;
  27, 18, 28, 86, 19, 89;
  30, 20, 31, 95, 21, 98;
...
(End)
		

Crossrefs

Programs

  • Mathematica
    nterms=100;Table[If[Mod[n,3]==1,(n-1)/3,If[Mod[n,6]==0||Mod[n,6]==2,n/2,(3n+1)/2]],{n,0,nterms-1}]
    (* Second program *)
    nterms=100;LinearRecurrence[{0,0,0,0,0,2,0,0,0,0,0,-1},{0,0,1,5,1,8,3,2,4,14,3,17},nterms]
  • Python
    def a(n):
        r = n%6
        if r == 1 or r == 4: return (n-1)//3
        if r == 0 or r == 2: return n//2
        if r == 3 or r == 5: return (3*n+1)//2
    print([a(n) for n in range(70)]) # Michael S. Branicky, Jan 02 2022

Formula

a(n) = (A349407(n+1)-1)/2.
a(n) = 2*a(n-6)-a(n-12). - Wesley Ivan Hurt, Jan 03 2022

A122485 Values of A083097(k) such that A083097(k) = A083097(k+1) - 1.

Original entry on oeis.org

5, 14, 41, 59, 122, 140, 167, 176, 365, 383, 410, 419, 491, 500, 527, 545, 1094, 1112, 1139, 1148, 1220, 1229, 1256, 1274, 1463, 1472, 1499, 1517, 1580, 1598, 1625, 1634, 3281, 3299, 3326, 3335, 3407, 3416, 3443, 3461, 3650, 3659, 3686, 3704, 3767, 3785, 3812
Offset: 1

Views

Author

Alexander Adamchuk, Sep 15 2006

Keywords

Comments

A083097(n) = A083095(n) = A083096(n)/6 = A083094(n)/4, where A083096 are the Numbers k such that 3 divides Sum_{j=1..k} C(2*j,j) = A066796(k).
All terms are of the form 9*m + 5 and belong to A017221 with m = {0, 1, 4, 6, 13, 15, 18, 19, 40, 42, ...}.
Corresponding numbers m such that a(m) = A083097(m) are A129771 (evil odd numbers).

Examples

			A083097 begins {0, 2, 5, 6, 14, 15, 18, 20, 41, 42, 45, 47, 54, 56, 59, 60, ...}.
So a(1) = 5 because 5 = A083097(3) = A083097(3+1) - 1.
a(2) = 14 because 14 = A083097(5) = A083097(5+1) - 1.
		

Crossrefs

Formula

a(n) = A083097(A129771(n)).

Extensions

More terms from R. J. Mathar, Jan 17 2008
More terms from Jinyuan Wang, Jan 22 2022
Edited by Michel Marcus, Jan 22 2022

A177073 a(n) = (9*n+4)*(9*n+5).

Original entry on oeis.org

20, 182, 506, 992, 1640, 2450, 3422, 4556, 5852, 7310, 8930, 10712, 12656, 14762, 17030, 19460, 22052, 24806, 27722, 30800, 34040, 37442, 41006, 44732, 48620, 52670, 56882, 61256, 65792, 70490, 75350, 80372, 85556, 90902, 96410, 102080, 107912, 113906, 120062
Offset: 0

Views

Author

Vincenzo Librandi, May 31 2010

Keywords

Comments

Cf. comment of Reinhard Zumkeller in A177059: in general, (h*n+h-k)*(h*n+k) = h^2*A002061(n+1) + (h-k)*k - h^2; therefore a(n) = 81*A002061(n+1) - 61. - Bruno Berselli, Aug 24 2010

Crossrefs

Programs

  • Magma
    [(9*n+4)*(9*n+5): n in [0..50]]; // Vincenzo Librandi, Apr 08 2013
    
  • Mathematica
    f[n_] := Module[{c = 9n}, (c+4)(c+5)]; Array[f, 40, 0] (* or *) LinearRecurrence[{3, -3, 1}, {20, 182, 506}, 40] (* Harvey P. Dale, Jun 24 2011 *)
  • PARI
    a(n)=(9*n+4)*(9*n+5) \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = 162*n + a(n-1) with n > 0, a(0)=20.
From Harvey P. Dale, Jun 24 2011: (Start)
a(0)=20, a(1)=182, a(2)=506, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: -2*(x*(10*x+61)+10)/(x-1)^3. (End)
From Amiram Eldar, Feb 19 2023: (Start)
a(n) = A017209(n)*A017221(n).
Sum_{n>=0} 1/a(n) = tan(Pi/18)*Pi/9.
Product_{n>=0} (1 - 1/a(n)) = sec(Pi/18)*cos(sqrt(5)*Pi/18).
Product_{n>=0} (1 + 1/a(n)) = sec(Pi/18)*cosh(sqrt(3)*Pi/18). (End)
E.g.f.: exp(x)*(20 + 81*x*(2 + x)). - Elmo R. Oliveira, Oct 18 2024

Extensions

Edited by N. J. A. Sloane, Jun 22 2010

A354939 Row 9 of A354940: Numbers k for which A345992(k) = 9, divided by 9.

Original entry on oeis.org

5, 7, 10, 14, 16, 19, 23, 25, 28, 32, 37, 41, 43, 46, 50, 59, 61, 64, 68, 73, 79, 82, 86, 91, 97, 100, 109, 113, 118, 122, 127, 131, 136, 145, 149, 151, 158, 163, 167, 169, 172, 181, 185, 194, 199, 212, 221, 223, 226, 235, 239, 241, 244, 253, 257, 262, 271, 277, 289, 293, 298, 302, 307, 311, 313, 316, 325, 331, 334
Offset: 1

Views

Author

Antti Karttunen, Jun 15 2022

Keywords

Comments

Apparently, all terms are either of the form 9k+1 (in A017173), or 9k+5 (in A017221), or 9k+7 (in A017245).

Crossrefs

Programs

  • Mathematica
    q[n_] := Module[{m = 1}, While[!Divisible[m*(m + 1), 9*n], m++]; GCD[9*n, m] == 9]; Select[Range[335], q] (* Amiram Eldar, Jun 17 2022 *)
  • PARI
    A354939(n) = A354940sq(9,n); \\ See the program in A354940.

A380820 a(0) = 0, a(1) = 1, and for n >= 2, a(n) = a(n-1) + a(n-2) if a(n-1) < n, otherwise a(n-1) - n.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 1, 9, 0, 9, 9, 18, 5, 23, 8, 31, 14, 45, 26, 6, 32, 10, 42, 18, 60, 34, 7, 41, 12, 53, 22, 75, 42, 8, 50, 14, 64, 26, 90, 50, 9, 59, 16, 75, 30, 105, 58, 10, 68, 18, 86, 34, 120, 66, 11, 77, 20, 97, 38, 135, 74, 12, 86, 22, 108, 42, 150
Offset: 0

Views

Author

Ya-Ping Lu, Feb 04 2025

Keywords

Comments

Sequence starts with the first 7 Fibonacci numbers. For n >= 12, a(n) takes the values of (8*n+30)/7, (n+22)/7, (9*n+35)/7, (2*n+26)/7, (11*n+41)/7, (4*n+30)/7, and (15*n+45)/7 sequentially for n = 5, 6, 0, 1, 2, 3, 4 mod 7 (see plot in Links), which correspond to A017089 (n>=2), A000027 (n>=5), A017221 (n>=2), A005843 (n>=4), A017497 (n>=2), A016825 (n>=3), and A008597 (n>=3), respectively.
Terms for n >= 16 are the same as A322558(n) for n >= 17.

Crossrefs

Programs

  • Mathematica
    s={0,1};Do[AppendTo[s,If[s[[-1]]James C. McMahon, Feb 14 2025 *)
  • Python
    def A380820(n): R = [0, 1, 1, 2, 3, 5, 8, 1, 9, 0, 9, 9]; X = [9, 2, 11, 4, 15, 8, 1]; Y = [35, 26, 41, 30, 45, 30, 22]; return R[n] if n < 12 else (X[n%7]*n + Y[n%7])//7

Formula

a(n) = A322558(n+1) for n >= 16.
Previous Showing 11-20 of 24 results. Next