A017224
a(n) = (9*n + 5)^4.
Original entry on oeis.org
625, 38416, 279841, 1048576, 2825761, 6250000, 12117361, 21381376, 35153041, 54700816, 81450625, 116985856, 163047361, 221533456, 294499921, 384160000, 492884401, 623201296, 777796321, 959512576
Offset: 0
Sequences of the form (9*n+5)^k:
A017221 (k=1),
A017222 (k=2),
A017223 (k=3), this sequence (k=4),
A017225 (k=5),
A017226 (k=6),
A017227 (k=7),
A017228 (k=8),
A017229 (k=9),
A017230 (k=10),
A017231 (k=11).
A130877
Numbers that are congruent to {0, 5} mod 9.
Original entry on oeis.org
0, 5, 9, 14, 18, 23, 27, 32, 36, 41, 45, 50, 54, 59, 63, 68, 72, 77, 81, 86, 90, 95, 99, 104, 108, 113, 117, 122, 126, 131, 135, 140, 144, 149, 153, 158, 162, 167, 171, 176, 180, 185, 189, 194, 198, 203, 207, 212, 216, 221, 225, 230, 234, 239, 243, 248, 252, 257
Offset: 1
-
op(select(n->n mod 9=0 or n mod 9=5,[$0..257])); # Paolo P. Lava, Jul 12 2018
# second Maple program:
a:= n-> ceil(9*(n-1)/2):
seq(a(n), n=1..58); # Alois P. Heinz, Apr 12 2025
-
Table[5n-5-Floor[(n-1)/2], {n,100}] (* Wesley Ivan Hurt, Oct 25 2013 *)
Select[Range[0,300],MemberQ[{0,5},Mod[#,9]]&] (* or *) LinearRecurrence[ {1,1,-1},{0,5,9},60] (* Harvey P. Dale, Aug 04 2019 *)
-
forstep(n=0,200,[5,4],print1(n", ")) \\ Charles R Greathouse IV, Oct 17 2011
A154267
a(n) = 27*n + 15.
Original entry on oeis.org
15, 42, 69, 96, 123, 150, 177, 204, 231, 258, 285, 312, 339, 366, 393, 420, 447, 474, 501, 528, 555, 582, 609, 636, 663, 690, 717, 744, 771, 798, 825, 852, 879, 906, 933, 960, 987, 1014, 1041, 1068, 1095, 1122, 1149, 1176, 1203, 1230, 1257, 1284, 1311, 1338
Offset: 0
-
I:=[15, 42]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, Feb 02 2012
-
Range[15, 7000, 27] (* Vladimir Joseph Stephan Orlovsky, Jul 13 2011 *)
LinearRecurrence[{2, -1}, {15, 42}, 40] (* Vincenzo Librandi, Feb 02 2012 *)
27*Range[0,50]+15 (* Harvey P. Dale, Feb 26 2017 *)
-
a(n)=27*n+15 \\ Charles R Greathouse IV, Dec 28 2011
A155704
Triangle read by rows where T(m,n)=2*m*n + m + n + 10.
Original entry on oeis.org
14, 17, 22, 20, 27, 34, 23, 32, 41, 50, 26, 37, 48, 59, 70, 29, 42, 55, 68, 81, 94, 32, 47, 62, 77, 92, 107, 122, 35, 52, 69, 86, 103, 120, 137, 154, 38, 57, 76, 95, 114, 133, 152, 171, 190, 41, 62, 83, 104, 125, 146, 167, 188, 209, 230, 44, 67, 90, 113, 136, 159, 182
Offset: 1
Triangle begins:
14;
17, 22;
20, 27, 34;
23, 32, 41, 50;
26, 37, 48, 59, 70;
29, 42, 55, 68, 81, 94;
32, 47, 62, 77, 92, 107, 122;
35, 52, 69, 86, 103, 120, 137, 154;
38, 57, 76, 95, 114, 133, 152, 171, 190;
41, 62, 83, 104, 125, 146, 167, 188, 209, 230;
-
[2*n*k + n + k + 10: k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 20 2012
-
t[n_,k_]:=2 n*k + n + k + 10; Table[t[n, k], {n, 15}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 20 2012 *)
A330613
Triangle read by rows: T(n, k) = 1 + k - 2*n - 2*k*n + 2*n^2, with 0 <= k < n.
Original entry on oeis.org
1, 5, 2, 13, 8, 3, 25, 18, 11, 4, 41, 32, 23, 14, 5, 61, 50, 39, 28, 17, 6, 85, 72, 59, 46, 33, 20, 7, 113, 98, 83, 68, 53, 38, 23, 8, 145, 128, 111, 94, 77, 60, 43, 26, 9, 181, 162, 143, 124, 105, 86, 67, 48, 29, 10, 221, 200, 179, 158, 137, 116, 95, 74, 53, 32, 11
Offset: 1
n\k| 0 1 2 3 4 5
---+------------------------
1 | 1
2 | 5 2
3 | 13 8 3
4 | 25 18 11 4
5 | 41 32 23 14 5
6 | 61 50 39 28 17 6
...
For n = 3 the matrix M is
1, 2, 3
2, 4, 6
3, 6, 8
and therefore T(3, 0) = 1 + 4 + 8 = 13, T(3, 1) = 2 + 6 = 8 and T(3, 2) = 3.
-
Flatten[Table[1+k-2n-2k*n+2n^2,{n,1,11},{k,0,n-1}]] (* or *)
r[n_] := Table[SeriesCoefficient[(1-x*(2-5x+2(1+x)y))/((1-x)^3*(1-y)^2), {x, 0, i}, {y, 0, j}], {i, n, n}, {j, 0, n-1}]; Flatten[Array[r, 11]] (* or *)
r[n_] := Table[SeriesCoefficient[Exp[x+y]*(1+2x(x-y)+y), {x, 0, i}, {y, 0, j}]*i!*j!, {i, n, n}, {j, 0, n-1}]; Flatten[Array[r, 11]]
A350515
a(n) = (n-1)/3 if n mod 3 = 1; a(n) = n/2 if n mod 6 = 0 or n mod 6 = 2; a(n) = (3n+1)/2 if n mod 6 = 3 or n mod 6 = 5.
Original entry on oeis.org
0, 0, 1, 5, 1, 8, 3, 2, 4, 14, 3, 17, 6, 4, 7, 23, 5, 26, 9, 6, 10, 32, 7, 35, 12, 8, 13, 41, 9, 44, 15, 10, 16, 50, 11, 53, 18, 12, 19, 59, 13, 62, 21, 14, 22, 68, 15, 71, 24, 16, 25, 77, 17, 80, 27, 18, 28, 86, 19, 89, 30, 20, 31, 95, 21, 98, 33, 22, 34, 104
Offset: 0
From _Omar E. Pol_, Jan 02 2022: (Start)
Written as a rectangular array with six columns read by rows the sequence begins:
0, 0, 1, 5, 1, 8;
3, 2, 4, 14, 3, 17;
6, 4, 7, 23, 5, 26;
9, 6, 10, 32, 7, 35;
12, 8, 13, 41, 9, 44;
15, 10, 16, 50, 11, 53;
18, 12, 19, 59, 13, 62;
21, 14, 22, 68, 15, 71;
24, 16, 25, 77, 17, 80;
27, 18, 28, 86, 19, 89;
30, 20, 31, 95, 21, 98;
...
(End)
- H. M. Farkas, "Variants of the 3N+1 Conjecture and Multiplicative Semigroups", in Entov, Pinchover and Sageev, Geometry, Spectral Theory, Groups, and Dynamics, Contemporary Mathematics, vol. 387, American Mathematical Society, 2005, p. 121.
- Emre Yolcu, Scott Aaronson and Marijn J. H. Heule, An Automated Approach to the Collatz Conjecture, arXiv:2105.14697 [cs.LO], 2021, pp. 21-25.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,2,0,0,0,0,0,-1).
-
nterms=100;Table[If[Mod[n,3]==1,(n-1)/3,If[Mod[n,6]==0||Mod[n,6]==2,n/2,(3n+1)/2]],{n,0,nterms-1}]
(* Second program *)
nterms=100;LinearRecurrence[{0,0,0,0,0,2,0,0,0,0,0,-1},{0,0,1,5,1,8,3,2,4,14,3,17},nterms]
-
def a(n):
r = n%6
if r == 1 or r == 4: return (n-1)//3
if r == 0 or r == 2: return n//2
if r == 3 or r == 5: return (3*n+1)//2
print([a(n) for n in range(70)]) # Michael S. Branicky, Jan 02 2022
Original entry on oeis.org
5, 14, 41, 59, 122, 140, 167, 176, 365, 383, 410, 419, 491, 500, 527, 545, 1094, 1112, 1139, 1148, 1220, 1229, 1256, 1274, 1463, 1472, 1499, 1517, 1580, 1598, 1625, 1634, 3281, 3299, 3326, 3335, 3407, 3416, 3443, 3461, 3650, 3659, 3686, 3704, 3767, 3785, 3812
Offset: 1
A083097 begins {0, 2, 5, 6, 14, 15, 18, 20, 41, 42, 45, 47, 54, 56, 59, 60, ...}.
So a(1) = 5 because 5 = A083097(3) = A083097(3+1) - 1.
a(2) = 14 because 14 = A083097(5) = A083097(5+1) - 1.
A177073
a(n) = (9*n+4)*(9*n+5).
Original entry on oeis.org
20, 182, 506, 992, 1640, 2450, 3422, 4556, 5852, 7310, 8930, 10712, 12656, 14762, 17030, 19460, 22052, 24806, 27722, 30800, 34040, 37442, 41006, 44732, 48620, 52670, 56882, 61256, 65792, 70490, 75350, 80372, 85556, 90902, 96410, 102080, 107912, 113906, 120062
Offset: 0
-
[(9*n+4)*(9*n+5): n in [0..50]]; // Vincenzo Librandi, Apr 08 2013
-
f[n_] := Module[{c = 9n}, (c+4)(c+5)]; Array[f, 40, 0] (* or *) LinearRecurrence[{3, -3, 1}, {20, 182, 506}, 40] (* Harvey P. Dale, Jun 24 2011 *)
-
a(n)=(9*n+4)*(9*n+5) \\ Charles R Greathouse IV, Jun 17 2017
A354939
Row 9 of A354940: Numbers k for which A345992(k) = 9, divided by 9.
Original entry on oeis.org
5, 7, 10, 14, 16, 19, 23, 25, 28, 32, 37, 41, 43, 46, 50, 59, 61, 64, 68, 73, 79, 82, 86, 91, 97, 100, 109, 113, 118, 122, 127, 131, 136, 145, 149, 151, 158, 163, 167, 169, 172, 181, 185, 194, 199, 212, 221, 223, 226, 235, 239, 241, 244, 253, 257, 262, 271, 277, 289, 293, 298, 302, 307, 311, 313, 316, 325, 331, 334
Offset: 1
-
q[n_] := Module[{m = 1}, While[!Divisible[m*(m + 1), 9*n], m++]; GCD[9*n, m] == 9]; Select[Range[335], q] (* Amiram Eldar, Jun 17 2022 *)
-
A354939(n) = A354940sq(9,n); \\ See the program in A354940.
A380820
a(0) = 0, a(1) = 1, and for n >= 2, a(n) = a(n-1) + a(n-2) if a(n-1) < n, otherwise a(n-1) - n.
Original entry on oeis.org
0, 1, 1, 2, 3, 5, 8, 1, 9, 0, 9, 9, 18, 5, 23, 8, 31, 14, 45, 26, 6, 32, 10, 42, 18, 60, 34, 7, 41, 12, 53, 22, 75, 42, 8, 50, 14, 64, 26, 90, 50, 9, 59, 16, 75, 30, 105, 58, 10, 68, 18, 86, 34, 120, 66, 11, 77, 20, 97, 38, 135, 74, 12, 86, 22, 108, 42, 150
Offset: 0
- Ya-Ping Lu, Plot of A380820
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,2,0,0,0,0,0,0,-1).
-
s={0,1};Do[AppendTo[s,If[s[[-1]]James C. McMahon, Feb 14 2025 *)
-
def A380820(n): R = [0, 1, 1, 2, 3, 5, 8, 1, 9, 0, 9, 9]; X = [9, 2, 11, 4, 15, 8, 1]; Y = [35, 26, 41, 30, 45, 30, 22]; return R[n] if n < 12 else (X[n%7]*n + Y[n%7])//7
Comments