cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A139222 a(n) = 30*n - 27.

Original entry on oeis.org

3, 33, 63, 93, 123, 153, 183, 213, 243, 273, 303, 333, 363, 393, 423, 453, 483, 513, 543, 573, 603, 633, 663, 693, 723, 753, 783, 813, 843, 873, 903, 933, 963, 993, 1023, 1053, 1083, 1113, 1143, 1173, 1203, 1233, 1263, 1293, 1323, 1353, 1383, 1413, 1443, 1473
Offset: 1

Views

Author

Odimar Fabeny, Jun 06 2008

Keywords

Comments

Multiples of 3 with the units digit equal to 3.

Crossrefs

Subsequence of A034709, together with A017281, A017293, A139245, A017329, A139249, A139264, A139279 and A139280.

Programs

Formula

a(n) = a(n-1) + 30.
From Elmo R. Oliveira, Apr 04 2025: (Start)
G.f.: 3*x*(1+9*x)/(1-x)^2.
E.g.f.: 3*(exp(x)*(10*x - 9) + 9).
a(n) = 3*A017281(n-1) = A139280(n)/3.
a(n) = 2*a(n-1) - a(n-2) for n > 2. (End)

Extensions

More terms from Reinhard Zumkeller, Jun 22 2008

A139249 a(n) = 30*n - 24.

Original entry on oeis.org

6, 36, 66, 96, 126, 156, 186, 216, 246, 276, 306, 336, 366, 396, 426, 456, 486, 516, 546, 576, 606, 636, 666, 696, 726, 756, 786, 816, 846, 876, 906, 936, 966, 996, 1026, 1056, 1086, 1116, 1146, 1176, 1206, 1236, 1266, 1296, 1326, 1356, 1386, 1416, 1446, 1476
Offset: 1

Views

Author

Odimar Fabeny, Jun 06 2008, Jun 07 2008

Keywords

Comments

Multiples of 6 with unit digit equal to 6.

Crossrefs

Subsequence of A034709, together with A017281, A017293, A139222, A139245, A017329, A139264, A139279 and A139280. - Reinhard Zumkeller, Jun 22 2008
Cf. A016861.

Programs

Formula

a(n) = a(n-1) + 30.
From Elmo R. Oliveira, Apr 04 2025: (Start)
G.f.: 6*x*(1+4*x)/(1-x)^2.
E.g.f.: 6*(exp(x)*(5*x - 4) + 4).
a(n) = 6*A016861(n-1).
a(n) = 2*a(n-1) - a(n-2) for n > 2. (End)

Extensions

More terms from Reinhard Zumkeller, Jun 22 2008
Edited by R. J. Mathar, Jul 20 2008

A139264 a(n) = 70*n - 63.

Original entry on oeis.org

7, 77, 147, 217, 287, 357, 427, 497, 567, 637, 707, 777, 847, 917, 987, 1057, 1127, 1197, 1267, 1337, 1407, 1477, 1547, 1617, 1687, 1757, 1827, 1897, 1967, 2037, 2107, 2177, 2247, 2317, 2387, 2457, 2527, 2597, 2667, 2737, 2807, 2877, 2947, 3017, 3087, 3157, 3227
Offset: 1

Views

Author

Odimar Fabeny, Jun 06 2008

Keywords

Comments

Multiples of 7 with unit digit equal to 7.

Crossrefs

Subsequence of A034709, together with A017281, A017293, A139222, A139245, A017329, A139249, A139279 and A139280.

Programs

Formula

a(n) = a(n-1) + 70.
From Elmo R. Oliveira, Apr 04 2025: (Start)
G.f.: 7*x*(1+9*x)/(1-x)^2.
E.g.f.: 7*(exp(x)*(10*x - 9) + 9).
a(n) = 7*A017281(n-1).
a(n) = 2*a(n-1) - a(n-2) for n > 2. (End)

Extensions

More terms from Reinhard Zumkeller, Jun 22 2008

A166726 Nonnegative integers with English names ending in "o".

Original entry on oeis.org

0, 2, 22, 32, 42, 52, 62, 72, 82, 92, 102, 122, 132, 142, 152, 162, 172, 182, 192, 202, 222, 232, 242, 252, 262, 272, 282, 292, 302, 322, 332, 342, 352, 362, 372, 382, 392, 402, 422, 432, 442, 452, 462, 472, 482, 492, 502, 522, 532, 542, 552, 562, 572, 582
Offset: 1

Views

Author

Rick L. Shepherd, Oct 20 2009

Keywords

Comments

Two (2) is the only prime number whose English name does not end in "e" or "n".

Examples

			Zero (0) is a term; thirty-two (32) is a term; twelve (12) is not a term (but is a term of A059093).
		

Crossrefs

Formula

{0} UNION (A017293 MINUS {n | n = 12 mod 100}).

A260181 Numbers whose last digit is prime.

Original entry on oeis.org

2, 3, 5, 7, 12, 13, 15, 17, 22, 23, 25, 27, 32, 33, 35, 37, 42, 43, 45, 47, 52, 53, 55, 57, 62, 63, 65, 67, 72, 73, 75, 77, 82, 83, 85, 87, 92, 93, 95, 97, 102, 103, 105, 107, 112, 113, 115, 117, 122, 123, 125, 127, 132, 133, 135, 137, 142, 143, 145, 147
Offset: 1

Views

Author

Wesley Ivan Hurt, Jul 17 2015

Keywords

Comments

Numbers ending in 2, 3, 5 or 7.
The subsequence of primes is A042993. - Michel Marcus, Jul 19 2015
From Wesley Ivan Hurt, Aug 15 2015, Sep 26 2015: (Start)
Ceiling(a(n)/2) = A047201(n).
Complement of (A197652 Union A262389). (End)

Crossrefs

Cf. A042993, A047201, A092620, subset of A118950.
Union of A017293, A017305, A017329 and A017353.
First differences are [1,2,2,5,...] = A002522(A140081(n-1)).

Programs

  • GAP
    a:=n->(5*n-4-(-1)^n+((3-(-1)^n)/2)*(-1)^((2*n+5-(-1)^n)/4))/2; List([1..60],n->a(n)); # Muniru A Asiru, Feb 16 2018
  • Magma
    [(5*n-4-(-1)^n+((3-(-1)^n) div 2)*(-1)^((2*n+5-(-1)^n) div 4))/2: n in [1..70]]; // Vincenzo Librandi, Jul 18 2015
    
  • Maple
    A260181:=n->(5*n-4-(-1)^n+((3-(-1)^n)/2)*(-1)^((2*n+5-(-1)^n)/4))/2: seq(A260181(n), n=1..100);
  • Mathematica
    CoefficientList[Series[(2 + x + 2 x^2 + 2 x^3 + 3 x^4)/((x - 1)^2*(1 + x + x^2 + x^3)), {x, 0, 100}], x]
    LinearRecurrence[{1, 0, 0, 1, -1}, {2, 3, 5, 7, 12}, 60] (* Vincenzo Librandi, Jul 18 2015 *)
    Table[(5n - 4 - (-1)^n + ((3 - (-1)^n)/2)*(-1)^((2*n + 5 - (-1)^n)/4))/2, {n, 100}] (* Wesley Ivan Hurt, Aug 11 2015 *)
  • PARI
    is(n)=my(m=digits(n));isprime(m[#m]) \\ Anders Hellström, Jul 19 2015
    
  • PARI
    A260181(n)=(n--)\4*10+prime(n%4+1) \\ is(n)=isprime(n%10) is much more efficient than the above. - M. F. Hasler, Sep 16 2016
    

Formula

G.f.: x*(2+x+2*x^2+2*x^3+3*x^4) / ((x-1)^2*(1+x+x^2+x^3)).
a(n) = a(n-1)+a(n-4)-a(n-5), n>5.
a(n) = (5*n-4-(-1)^n+((3-(-1)^n)/2)*(-1)^((2*n+5-(-1)^n)/4))/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = (2*sqrt(5*sqrt(5+2*sqrt(5))) - 25*log(5) - 40*log(2) + 5*sqrt(5)*arccoth(843/2))/200. - Amiram Eldar, Jul 30 2024

A168457 a(n) = (10*n + 5*(-1)^n - 1)/2.

Original entry on oeis.org

2, 12, 12, 22, 22, 32, 32, 42, 42, 52, 52, 62, 62, 72, 72, 82, 82, 92, 92, 102, 102, 112, 112, 122, 122, 132, 132, 142, 142, 152, 152, 162, 162, 172, 172, 182, 182, 192, 192, 202, 202, 212, 212, 222, 222, 232, 232, 242, 242, 252, 252, 262, 262, 272, 272, 282
Offset: 1

Views

Author

Vincenzo Librandi, Nov 26 2009

Keywords

Crossrefs

Programs

  • Magma
    [2+10*Floor(n/2): n in [1..70]]; // Vincenzo Librandi, Sep 19 2013
  • Mathematica
    Table[5 n + 5 (-1)^n/2 - 1/2, {n, 60}] (* Bruno Berselli, Sep 16 2013 *)
    Table[2 + 10 Floor[n/2], {n, 70}] (* or *) CoefficientList[Series[2 (1 + 5 x - x^2)/((1 + x) (x - 1)^2), {x, 0, 70}], x] (* Vincenzo Librandi, Sep 19 2013 *)
    LinearRecurrence[{1,1,-1},{2,12,12},80] (* Harvey P. Dale, Dec 27 2024 *)

Formula

a(n) = 10*n - a(n-1) - 6 for n>1, a(1)=2.
From Bruno Berselli, Sep 16 2013: (Start)
G.f.: 2*x*(1 + 5*x - x^2)/((1+x)*(1-x)^2).
a(n) = A168459(n) + 1 = 2*A168282(n).
a(n) = a(n-1) +a(n-2) -a(n-3). (End)
a(n) = 2 + 10*Floor(n/2). - Vincenzo Librandi, Sep 19 2013
E.g.f.: (1/2)*(5 - 4*exp(x) + (10*x - 1)*exp(2*x))*exp(-x). - G. C. Greubel, Jul 22 2016

Extensions

New definition by Bruno Berselli, Sep 16 2013

A017294 a(n) = (10*n+2)^2.

Original entry on oeis.org

4, 144, 484, 1024, 1764, 2704, 3844, 5184, 6724, 8464, 10404, 12544, 14884, 17424, 20164, 23104, 26244, 29584, 33124, 36864, 40804, 44944, 49284, 53824, 58564, 63504, 68644, 73984, 79524, 85264
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = a(n-1)+200n-60, n>0 ; a(0)=4. - Miquel Cerda, Oct 30 2016
G.f.: 4*(1 + 33*x + 16*x^2)/(1 - x)^3. - Ilya Gutkovskiy, Oct 30 2016
a(n) = A017293(n)^2. - Michel Marcus, Oct 30 2016
a(n) = (2*A016861(n))^2. - David A. Corneth, Oct 30 2016

A346629 Number of n-digit positive integers that are the product of two integers ending with 2.

Original entry on oeis.org

1, 4, 45, 450, 4500, 45000, 450000, 4500000, 45000000, 450000000, 4500000000, 45000000000, 450000000000, 4500000000000, 45000000000000, 450000000000000, 4500000000000000, 45000000000000000, 450000000000000000, 4500000000000000000, 45000000000000000000, 450000000000000000000
Offset: 1

Views

Author

Stefano Spezia, Jul 25 2021

Keywords

Comments

a(n) is the number of n-digit numbers in A139245.
After initial 1 or 2 values the same as A137233. - R. J. Mathar, Aug 23 2021

Crossrefs

Cf. A011557 (powers of 10), A017293 (positive integers ending with 2), A052268 (number of n-digit integers), A139245 (product of two integers ending with 2), A093143, A337855, A337856.
Cf. A137233.

Programs

  • Mathematica
    LinearRecurrence[{10},{1,4,45},25]

Formula

O.g.f.: x*(1 - 6*x + 5*x^2)/(1 - 10*x).
E.g.f.: (9*exp(10*x) - 9 + 110*x - 50*x^2)/200.
a(n) = 10*a(n-1) for n > 3, with a(1) = 1, a(2) = 4 and a(3) = 45.
a(n) = 45*10^(n-3) for n > 2.
a(n) = 45*A011557(n-3) for n > 2.
Sum_{i=1..n} a(n) = A093143(n-1).

A385623 Array read by ascending antidiagonals: A(n,k) is the number obtained by concatenation of n with k in that order, with k >= 0.

Original entry on oeis.org

0, 10, 1, 20, 11, 2, 30, 21, 12, 3, 40, 31, 22, 13, 4, 50, 41, 32, 23, 14, 5, 60, 51, 42, 33, 24, 15, 6, 70, 61, 52, 43, 34, 25, 16, 7, 80, 71, 62, 53, 44, 35, 26, 17, 8, 90, 81, 72, 63, 54, 45, 36, 27, 18, 9, 100, 91, 82, 73, 64, 55, 46, 37, 28, 19, 10, 110, 101, 92, 83, 74, 65, 56, 47, 38, 29, 110, 11
Offset: 0

Views

Author

Stefano Spezia, Jul 05 2025

Keywords

Examples

			Array begins as:
   0,  1,  2,  3,  4,  5,  6,  7, ...
  10, 11, 12, 13, 14, 15, 16, 17, ...
  20, 21, 22, 23, 24, 25, 26, 27, ...
  30, 31, 32, 33, 34, 35, 36, 37, ...
  40, 41, 42, 43, 44, 45, 46, 47, ...
  50, 51, 52, 53, 54, 55, 56, 57, ...
  60, 61, 62, 63, 64, 65, 66, 67, ...
  ...
		

Crossrefs

Cf. A001477 (1st row), A020338 (main diagonal), A055642, A385624 (antidiagonal sums).

Programs

  • Mathematica
    A[n_,k_]:=FromDigits[Join[IntegerDigits[n],IntegerDigits[k]]]; Table[A[n,k],{n,0,6},{k,0,7}] (* or *)
    A[n_,k_]:=If[k==0,10n,n*10^(Floor[Log10[k]]+1)+k]; Table[A[n-k,k],{n,0,11},{k,0,n}]//Flatten
  • PARI
    T(n, k) = fromdigits(concat(digits(n), digits(k))); \\ Michel Marcus, Jul 06 2025

Formula

A(n,0) = 10*n and A(n,k) = n*10^(floor(log_10(k)) + 1) + k for k > 0.

A017295 (10*n+2)^3.

Original entry on oeis.org

8, 1728, 10648, 32768, 74088, 140608, 238328, 373248, 551368, 778688, 1061208, 1404928, 1815848, 2299968, 2863288, 3511808, 4251528, 5088448, 6028568, 7077888, 8242408, 9528128, 10941048, 12487168
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1996

Keywords

Crossrefs

Programs

Formula

a(n) = A017293(n)^3 = A000578(10n+2). - Wesley Ivan Hurt, May 02 2014
G.f.: 8*(64*x^3+473*x^2+212*x+1) / (x-1)^4. - Colin Barker, May 03 2014
Previous Showing 11-20 of 26 results. Next