cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 63 results. Next

A094728 Triangle read by rows: T(n,k) = n^2 - k^2, 0 <= k < n.

Original entry on oeis.org

1, 4, 3, 9, 8, 5, 16, 15, 12, 7, 25, 24, 21, 16, 9, 36, 35, 32, 27, 20, 11, 49, 48, 45, 40, 33, 24, 13, 64, 63, 60, 55, 48, 39, 28, 15, 81, 80, 77, 72, 65, 56, 45, 32, 17, 100, 99, 96, 91, 84, 75, 64, 51, 36, 19, 121, 120, 117, 112, 105, 96, 85, 72, 57, 40, 21
Offset: 1

Views

Author

Reinhard Zumkeller, May 24 2004

Keywords

Comments

(T(n,k) mod 4) <> 2, see A042965, A016825.
All numbers m occur A034178(m) times.
The row polynomials T(n,x) appear in the calculation of the column g.f.s of triangle A120070 (used to find the frequencies of the spectral lines of the hydrogen atom).

Examples

			n=3: T(3,x) = 9+8*x+5*x^2.
Triangle begins:
   1;
   4,  3;
   9,  8,  5;
  16, 15, 12,  7;
  25, 24, 21, 16,  9;
  36, 35, 32, 27, 20, 11;
  49, 48, 45, 40, 33, 24, 13;
  64, 63, 60, 55, 48, 39, 28, 15;
  81, 80, 77, 72, 65, 56, 45, 32, 17;
  ... etc. - _Philippe Deléham_, Mar 07 2013
		

Crossrefs

Programs

  • Magma
    [n^2-k^2: k in [0..n-1], n in [1..15]]; // G. C. Greubel, Mar 12 2024
    
  • Mathematica
    Table[n^2 - k^2, {n,12}, {k,0,n-1}]//Flatten (* Michael De Vlieger, Nov 25 2015 *)
  • SageMath
    flatten([[n^2-k^2 for k in range(n)] for n in range(1,16)]) # G. C. Greubel, Mar 12 2024

Formula

Row polynomials: T(n,x) = n^2*Sum_{m=0..n} x^m - Sum_{m=0..n} m^2*x^m = Sum_{k=0..n-1} T(n,k)*x^k, n >= 1.
T(n, k) = A004736(n,k)*A094727(n,k).
T(n, 0) = A000290(n).
T(n, 1) = A005563(n-1) for n>1.
T(n, 2) = A028347(n) for n>2.
T(n, 3) = A028560(n-3) for n>3.
T(n, 4) = A028566(n-4) for n>4.
T(n, n-1) = A005408(n).
T(n, n-2) = A008586(n-1) for n>1.
T(n, n-3) = A016945(n-2) for n>2.
T(n, n-4) = A008590(n-2) for n>3.
T(n, n-5) = A017329(n-3) for n>4.
T(n, n-6) = A008594(n-3) for n>5.
T(n, n-8) = A008598(n-2) for n>7.
T(A005408(k), k) = A000567(k).
Sum_{k=0..n} T(n, k) = A002412(n) (row sums).
From G. C. Greubel, Mar 12 2024: (Start)
Sum_{k=0..n-1} (-1)^k * T(n, k) = A000384(floor((n+1)/2)).
Sum_{k=0..floor((n-1)/2)} T(n-k, k) = A128624(n).
Sum_{k=0..floor((n-1)/2)} (-1)^k*T(n-k, k) = (1/2)*n*(n+1 - (-1)^n*cos(n*Pi/2)). (End)
G.f.: x*(1 - 3*x^2*y + x*(1 + y))/((1 - x)^3*(1 - x*y)^2). - Stefano Spezia, Aug 04 2025

A139245 a(n) = 20*n - 16.

Original entry on oeis.org

4, 24, 44, 64, 84, 104, 124, 144, 164, 184, 204, 224, 244, 264, 284, 304, 324, 344, 364, 384, 404, 424, 444, 464, 484, 504, 524, 544, 564, 584, 604, 624, 644, 664, 684, 704, 724, 744, 764, 784, 804, 824, 844, 864, 884, 904, 924, 944, 964, 984, 1004, 1024, 1044
Offset: 1

Views

Author

Odimar Fabeny, Jun 06 2008

Keywords

Comments

Multiples of 4 with the unit digit equal to 4.
Positive integers that are the product of two integers ending with 2 (see A017293). - Stefano Spezia, Jul 25 2021

Crossrefs

Subsequence of A034709, together with A017281, A017293, A139222, A017329, A139249, A139264, A139279 and A139280.
Cf. A017293.

Programs

Formula

a(n) = a(n-1) + 20.
a(n) = 4*A016861(n-1). - Wesley Ivan Hurt, Jan 17 2014
From Stefano Spezia, Jul 25 2021: (Start)
O.g.f.: 4*x*(1 + 4*x)/(1 - x)^2.
E.g.f.: 16 + 4*exp(x)*(5*x - 4).
a(n) = 2*a(n-1) - a(n-2) for n > 2. (End)

Extensions

More terms from Reinhard Zumkeller, Jun 22 2008

A139601 Square array of polygonal numbers read by ascending antidiagonals: T(n, k) = (n + 1)*(k - 1)*k/2 + k.

Original entry on oeis.org

0, 0, 1, 0, 1, 3, 0, 1, 4, 6, 0, 1, 5, 9, 10, 0, 1, 6, 12, 16, 15, 0, 1, 7, 15, 22, 25, 21, 0, 1, 8, 18, 28, 35, 36, 28, 0, 1, 9, 21, 34, 45, 51, 49, 36, 0, 1, 10, 24, 40, 55, 66, 70, 64, 45, 0, 1, 11, 27, 46, 65, 81, 91, 92, 81, 55, 0, 1, 12, 30, 52, 75, 96, 112, 120, 117, 100, 66
Offset: 0

Views

Author

Omar E. Pol, Apr 27 2008

Keywords

Comments

A general formula for polygonal numbers is P(n,k) = (n-2)(k-1)k/2 + k, where P(n,k) is the k-th n-gonal number. - Omar E. Pol, Dec 21 2008

Examples

			The square array of polygonal numbers begins:
========================================================
Triangulars .. A000217: 0, 1,  3,  6, 10,  15,  21,  28,
Squares ...... A000290: 0, 1,  4,  9, 16,  25,  36,  49,
Pentagonals .. A000326: 0, 1,  5, 12, 22,  35,  51,  70,
Hexagonals ... A000384: 0, 1,  6, 15, 28,  45,  66,  91,
Heptagonals .. A000566: 0, 1,  7, 18, 34,  55,  81, 112,
Octagonals ... A000567: 0, 1,  8, 21, 40,  65,  96, 133,
9-gonals ..... A001106: 0, 1,  9, 24, 46,  75, 111, 154,
10-gonals .... A001107: 0, 1, 10, 27, 52,  85, 126, 175,
11-gonals .... A051682: 0, 1, 11, 30, 58,  95, 141, 196,
12-gonals .... A051624: 0, 1, 12, 33, 64, 105, 156, 217,
And so on ..............................................
========================================================
		

Crossrefs

Sequences of m-gonal numbers: A000217 (m=3), A000290 (m=4), A000326 (m=5), A000384 (m=6), A000566 (m=7), A000567 (m=8), A001106 (m=9), A001107 (m=10), A051682 (m=11), A051624 (m=12), A051865 (m=13), A051866 (m=14), A051867 (m=15), A051868 (m=16), A051869 (m=17), A051870 (m=18), A051871 (m=19), A051872 (m=20), A051873 (m=21), A051874 (m=22), A051875 (m=23), A051876 (m=24), A255184 (m=25), A255185 (m=26), A255186 (m=27), A161935 (m=28), A255187 (m=29), A254474 (m=30).

Programs

  • Magma
    T:= func< n,k | k*((n+1)*(k-1) +2)/2 >;
    A139601:= func< n,k | T(n-k, k) >;
    [A139601(n,k): k in  [0..n], n in [0..12]]; // G. C. Greubel, Jul 12 2024
    
  • Mathematica
    T[n_, k_] := (n + 1)*(k - 1)*k/2 + k; Table[ T[n - k, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Robert G. Wilson v, Jul 12 2009 *)
  • SageMath
    def T(n,k): return k*((n+1)*(k-1)+2)/2
    def A139601(n,k): return T(n-k, k)
    flatten([[A139601(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 12 2024

Formula

T(n,k) = A086270(n,k), k>0. - R. J. Mathar, Aug 06 2008
T(n,k) = (n+1)*(k-1)*k/2 +k, n>=0, k>=0. - Omar E. Pol, Jan 07 2009
From G. C. Greubel, Jul 12 2024: (Start)
t(n, k) = (k/2)*( (k-1)*(n-k+1) + 2), where t(n,k) is this array read by rising antidiagonals.
t(2*n, n) = A006003(n).
t(2*n+1, n) = A002411(n).
t(2*n-1, n) = A006000(n-1).
Sum_{k=0..n} t(n, k) = A006522(n+2).
Sum_{k=0..n} (-1)^k*t(n, k) = (-1)^n * A117142(n).
Sum_{k=0..n} t(n-k, k) = (2*n^4 + 34*n^2 + 48*n - 15 + 3*(-1)^n*(2*n^2 + 16*n + 5))/384. (End)

A141419 Triangle read by rows: T(n, k) = A000217(n) - A000217(n - k) with 1 <= k <= n.

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 4, 7, 9, 10, 5, 9, 12, 14, 15, 6, 11, 15, 18, 20, 21, 7, 13, 18, 22, 25, 27, 28, 8, 15, 21, 26, 30, 33, 35, 36, 9, 17, 24, 30, 35, 39, 42, 44, 45, 10, 19, 27, 34, 40, 45, 49, 52, 54, 55
Offset: 1

Views

Author

Roger L. Bagula, Aug 05 2008

Keywords

Comments

As a rectangle, the accumulation array of A051340.
From Clark Kimberling, Feb 05 2011: (Start)
Here all the weights are divided by two where they aren't in Cahn.
As a rectangle, A141419 is in the accumulation chain
... < A051340 < A141419 < A185874 < A185875 < A185876 < ...
(See A144112 for the definition of accumulation array.)
row 1: A000027
col 1: A000217
diag (1,5,...): A000326 (pentagonal numbers)
diag (2,7,...): A005449 (second pentagonal numbers)
diag (3,9,...): A045943 (triangular matchstick numbers)
diag (4,11,...): A115067
diag (5,13,...): A140090
diag (6,15,...): A140091
diag (7,17,...): A059845
diag (8,19,...): A140672
(End)
Let N=2*n+1 and k=1,2,...,n. Let A_{N,n-1} = [0,...,0,1; 0,...,0,1,1; ...; 0,1,...,1; 1,...,1], an n X n unit-primitive matrix (see [Jeffery]). Let M_n=[A_{N,n-1}]^4. Then t(n,k)=[M_n](1,k), that is, the n-th row of the triangle is given by the first row of M_n. - _L. Edson Jeffery, Nov 20 2011
Conjecture. Let N=2*n+1 and k=1,...,n. Let A_{N,0}, A_{N,1}, ..., A_{N,n-1} be the n X n unit-primitive matrices (again see [Jeffery]) associated with N, and define the Chebyshev polynomials of the second kind by the recurrence U_0(x) = 1, U_1(x) = 2*x and U_r(x) = 2*x*U_(r-1)(x) - U_(r-2)(x) (r>1). Define the column vectors V_(k-1) = (U_(k-1)(cos(Pi/N)), U_(k-1)(cos(3*Pi/N)), ..., U_(k-1)(cos((2*n-1)*Pi/N)))^T, where T denotes matrix transpose. Let S_N = [V_0, V_1, ..., V_(n-1)] be the n X n matrix formed by taking V_(k-1) as column k-1. Let X_N = [S_N]^T*S_N, and let [X_N](i,j) denote the entry in row i and column j of X_N, i,j in {0,...,n-1}. Then t(n,k) = [X_N](k-1,k-1), and row n of the triangle is given by the main diagonal entries of X_N. Remarks: Hence t(n,k) is the sum of squares t(n,k) = sum[m=1,...,n (U_(k-1)(cos((2*m-1)*Pi/N)))^2]. Finally, this sequence is related to A057059, since X_N = [sum_{m=1,...,n} A057059(n,m)*A_{N,m-1}] is also an integral linear combination of unit-primitive matrices from the N-th set. - L. Edson Jeffery, Jan 20 2012
Row sums: n*(n+1)*(2*n+1)/6. - L. Edson Jeffery, Jan 25 2013
n-th row = partial sums of n-th row of A004736. - Reinhard Zumkeller, Aug 04 2014
T(n,k) is the number of distinct sums made by at most k elements in {1, 2, ... n}, for 1 <= k <= n, e.g., T(6,2) = the number of distinct sums made by at most 2 elements in {1,2,3,4,5,6}. The sums range from 1, to 5+6=11. So there are 11 distinct sums. - Derek Orr, Nov 26 2014
A number n occurs in this sequence A001227(n) times, the number of odd divisors of n, see A209260. - Hartmut F. W. Hoft, Apr 14 2016
Conjecture: 2*n + 1 is composite if and only if gcd(t(n,m),m) != 1, for some m. - L. Edson Jeffery, Jan 30 2018
From Peter Munn, Aug 21 2019 in respect of the sequence read as a triangle: (Start)
A number m can be found in column k if and only if A286013(m, k) is nonzero, in which case m occurs in column k on row A286013(m, k).
The first occurrence of m is in row A212652(m) column A109814(m), which is the rightmost column in which m occurs. This occurrence determines where m appears in A209260. The last occurrence of m is in row m column 1.
Viewed as a sequence of rows, consider the subsequences (of rows) that contain every positive integer. The lexicographically latest of these subsequences consists of the rows with row numbers in A270877; this is the only one that contains its own row numbers only once.
(End)

Examples

			As a triangle:
   1,
   2,  3,
   3,  5,  6,
   4,  7,  9, 10,
   5,  9, 12, 14, 15,
   6, 11, 15, 18, 20, 21,
   7, 13, 18, 22, 25, 27, 28,
   8, 15, 21, 26, 30, 33, 35, 36,
   9, 17, 24, 30, 35, 39, 42, 44, 45,
  10, 19, 27, 34, 40, 45, 49, 52, 54, 55;
As a rectangle:
   1   2   3   4   5   6   7   8   9  10
   3   5   7   9  11  13  15  17  19  21
   6   9  12  15  18  21  24  27  30  33
  10  14  18  22  26  30  34  38  42  46
  15  20  25  30  35  40  45  50  55  60
  21  27  33  39  45  51  57  63  69  75
  28  35  42  49  56  63  70  77  84  91
  36  44  52  60  68  76  84  92 100 108
  45  54  63  72  81  90  99 108 117 126
  55  65  75  85  95 105 115 125 135 145
Since the odd divisors of 15 are 1, 3, 5 and 15, number 15 appears four times in the triangle at t(3+(5-1)/2, 5) in column 5 since 5+1 <= 2*3, t(5+(3-1)/2, 3), t(1+(15-1)/2, 2*1) in column 2 since 15+1 > 2*1, and t(15+(1-1)/2, 1). - _Hartmut F. W. Hoft_, Apr 14 2016
		

References

  • R. N. Cahn, Semi-Simple Lie Algebras and Their Representations, Dover, NY, 2006, ISBN 0-486-44999-8, p. 139.

Crossrefs

Cf. A000330 (row sums), A004736, A057059, A070543.
A144112, A051340, A141419, A185874, A185875, A185876 are accumulation chain related.
A141418 is a variant.
Cf. A001227, A209260. - Hartmut F. W. Hoft, Apr 14 2016
A109814, A212652, A270877, A286013 relate to where each natural number appears in this sequence.
A000027, A000217, A000326, A005449, A045943, A059845, A115067, A140090, A140091, A140672 are rows, columns or diagonals - refer to comments.

Programs

  • Haskell
    a141419 n k =  k * (2 * n - k + 1) `div` 2
    a141419_row n = a141419_tabl !! (n-1)
    a141419_tabl = map (scanl1 (+)) a004736_tabl
    -- Reinhard Zumkeller, Aug 04 2014
  • Maple
    a:=(n,k)->k*n-binomial(k,2): seq(seq(a(n,k),k=1..n),n=1..12); # Muniru A Asiru, Oct 14 2018
  • Mathematica
    T[n_, m_] = m*(2*n - m + 1)/2; a = Table[Table[T[n, m], {m, 1, n}], {n, 1, 10}]; Flatten[a]

Formula

t(n,m) = m*(2*n - m + 1)/2.
t(n,m) = A000217(n) - A000217(n-m). - L. Edson Jeffery, Jan 16 2013
Let v = d*h with h odd be an integer factorization, then v = t(d+(h-1)/2, h) if h+1 <= 2*d, and v = t(d+(h-1)/2, 2*d) if h+1 > 2*d; see A209260. - Hartmut F. W. Hoft, Apr 14 2016
G.f.: y*(-x + y)/((-1 + x)^2*(-1 + y)^3). - Stefano Spezia, Oct 14 2018
T(n, 2) = A060747(n) for n > 1. T(n, 3) = A008585(n - 1) for n > 2. T(n, 4) = A016825(n - 2) for n > 3. T(n, 5) = A008587(n - 2) for n > 4. T(n, 6) = A016945(n - 3) for n > 5. T(n, 7) = A008589(n - 3) for n > 6. T(n, 8) = A017113(n - 4) for n > 7.r n > 5. T(n, 7) = A008589(n - 3) for n > 6. T(n, 8) = A017113(n - 4) for n > 7. T(n, 9) = A008591(n - 4) for n > 8. T(n, 10) = A017329(n - 5) for n > 9. T(n, 11) = A008593(n - 5) for n > 10. T(n, 12) = A017593(n - 6) for n > 11. T(n, 13) = A008595(n - 6) for n > 12. T(n, 14) = A147587(n - 7) for n > 13. T(n, 15) = A008597(n - 7) for n > 14. T(n, 16) = A051062(n - 8) for n > 15. T(n, 17) = A008599(n - 8) for n > 16. - Stefano Spezia, Oct 14 2018
T(2*n-k, k) = A070543(n, k). - Peter Munn, Aug 21 2019

Extensions

Simpler name by Stefano Spezia, Oct 14 2018

A256786 Numbers which are divisible by prime(d) for all digits d in their decimal representation.

Original entry on oeis.org

12, 14, 42, 55, 154, 222, 228, 714, 1122, 1196, 1212, 1414, 2112, 2142, 2262, 3355, 4144, 4242, 5335, 5544, 5555, 6162, 9499, 11112, 11144, 11214, 11424, 11466, 11622, 11818, 11914, 12222, 12882, 14112, 15554, 16666, 21216, 21222, 21252, 21888, 22122, 22212
Offset: 1

Views

Author

Keywords

Comments

All terms are zerofree, cf. A052382;
there is no term containing digits 1 and 3 simultaneously;
a(n) contains at least one digit 1 iff a(n) is even, cf. A011531, A005843;
a(n) contains at least one digit 2 iff a(n) mod 3 = 0, cf. A011532, A008585;
a(n) contains at least one digit 3 iff a(n) mod 10 = 5, cf. A011533, A017329;
A020639(a(n)) <= 23.
The equivalent in base 2 is the empty sequence, in base 3 it is A191681\{0}; see A256874-A256879 for the base 4 - base 9 variant, and A256870 for a variant where digits 0 are allowed but divisibility by prime(d+1) is required instead. - M. F. Hasler, Apr 11 2015

Examples

			Smallest terms containing the nonzero decimal digits:
.  d | prime(d) |  n | a(n)
. ---+----------+--------------------------
.  1 |       2  |  1 |   12 = 2^2 * 3
.  2 |       3  |  1 |   12 = 2^2 * 3
.  3 |       5  | 16 | 3355 = 5 * 11 * 61
.  4 |       7  |  2 |   14 = 2 * 7
.  5 |      11  |  4 |   55 = 5 * 11
.  6 |      13  | 10 | 1196 = 2^2 * 13 * 23
.  7 |      17  |  8 |  714 = 2 * 3 * 7 * 17
.  8 |      19  |  7 |  228 = 2^2 * 3 * 19
.  9 |      23  | 10 | 1196 = 2^2 * 13 * 23 .
		

Crossrefs

Programs

  • Haskell
    a256786 n = a256786_list !! (n-1)
    a256786_list = filter f a052382_list where
       f x = g x where
         g z = z == 0 || x `mod` a000040 d == 0 && g z'
               where (z', d) = divMod z 10
    
  • Mathematica
    Select[Range@22222,FreeQ[IntegerDigits[#],0]&&Total[Mod[#,Prime[IntegerDigits[#]]]]==0&] (* Ivan N. Ianakiev, Apr 11 2015 *)
  • PARI
    is_A256786(n)=!for(i=1,#d=Set(digits(n)),(!d[i]||n%prime(d[i]))&&return) \\ M. F. Hasler, Apr 11 2015
    
  • Python
    primes = [1, 2, 3, 5, 7, 11, 13, 17, 19, 23]
    def ok(n):
        s = str(n)
        return "0" not in s and all(n%primes[int(d)] == 0 for d in s)
    print([k for k in range(22213) if ok(k)]) # Michael S. Branicky, Dec 14 2021

A139222 a(n) = 30*n - 27.

Original entry on oeis.org

3, 33, 63, 93, 123, 153, 183, 213, 243, 273, 303, 333, 363, 393, 423, 453, 483, 513, 543, 573, 603, 633, 663, 693, 723, 753, 783, 813, 843, 873, 903, 933, 963, 993, 1023, 1053, 1083, 1113, 1143, 1173, 1203, 1233, 1263, 1293, 1323, 1353, 1383, 1413, 1443, 1473
Offset: 1

Views

Author

Odimar Fabeny, Jun 06 2008

Keywords

Comments

Multiples of 3 with the units digit equal to 3.

Crossrefs

Subsequence of A034709, together with A017281, A017293, A139245, A017329, A139249, A139264, A139279 and A139280.

Programs

Formula

a(n) = a(n-1) + 30.
From Elmo R. Oliveira, Apr 04 2025: (Start)
G.f.: 3*x*(1+9*x)/(1-x)^2.
E.g.f.: 3*(exp(x)*(10*x - 9) + 9).
a(n) = 3*A017281(n-1) = A139280(n)/3.
a(n) = 2*a(n-1) - a(n-2) for n > 2. (End)

Extensions

More terms from Reinhard Zumkeller, Jun 22 2008

A139249 a(n) = 30*n - 24.

Original entry on oeis.org

6, 36, 66, 96, 126, 156, 186, 216, 246, 276, 306, 336, 366, 396, 426, 456, 486, 516, 546, 576, 606, 636, 666, 696, 726, 756, 786, 816, 846, 876, 906, 936, 966, 996, 1026, 1056, 1086, 1116, 1146, 1176, 1206, 1236, 1266, 1296, 1326, 1356, 1386, 1416, 1446, 1476
Offset: 1

Views

Author

Odimar Fabeny, Jun 06 2008, Jun 07 2008

Keywords

Comments

Multiples of 6 with unit digit equal to 6.

Crossrefs

Subsequence of A034709, together with A017281, A017293, A139222, A139245, A017329, A139264, A139279 and A139280. - Reinhard Zumkeller, Jun 22 2008
Cf. A016861.

Programs

Formula

a(n) = a(n-1) + 30.
From Elmo R. Oliveira, Apr 04 2025: (Start)
G.f.: 6*x*(1+4*x)/(1-x)^2.
E.g.f.: 6*(exp(x)*(5*x - 4) + 4).
a(n) = 6*A016861(n-1).
a(n) = 2*a(n-1) - a(n-2) for n > 2. (End)

Extensions

More terms from Reinhard Zumkeller, Jun 22 2008
Edited by R. J. Mathar, Jul 20 2008

A139264 a(n) = 70*n - 63.

Original entry on oeis.org

7, 77, 147, 217, 287, 357, 427, 497, 567, 637, 707, 777, 847, 917, 987, 1057, 1127, 1197, 1267, 1337, 1407, 1477, 1547, 1617, 1687, 1757, 1827, 1897, 1967, 2037, 2107, 2177, 2247, 2317, 2387, 2457, 2527, 2597, 2667, 2737, 2807, 2877, 2947, 3017, 3087, 3157, 3227
Offset: 1

Views

Author

Odimar Fabeny, Jun 06 2008

Keywords

Comments

Multiples of 7 with unit digit equal to 7.

Crossrefs

Subsequence of A034709, together with A017281, A017293, A139222, A139245, A017329, A139249, A139279 and A139280.

Programs

Formula

a(n) = a(n-1) + 70.
From Elmo R. Oliveira, Apr 04 2025: (Start)
G.f.: 7*x*(1+9*x)/(1-x)^2.
E.g.f.: 7*(exp(x)*(10*x - 9) + 9).
a(n) = 7*A017281(n-1).
a(n) = 2*a(n-1) - a(n-2) for n > 2. (End)

Extensions

More terms from Reinhard Zumkeller, Jun 22 2008

A376506 Natural numbers whose iterated squaring modulo 100 eventually settles at the attractor 1.

Original entry on oeis.org

1, 7, 43, 49, 51, 57, 93, 99, 101, 107, 143, 149, 151, 157, 193, 199, 201, 207, 243, 249, 251, 257, 293, 299, 301, 307, 343, 349, 351, 357, 393, 399, 401, 407, 443, 449, 451, 457, 493, 499, 501, 507, 543, 549, 551, 557, 593, 599, 601, 607, 643, 649, 651, 657
Offset: 1

Views

Author

Martin Renner, Sep 25 2024

Keywords

Comments

The natural numbers decompose into six categories under the operation of repeated squaring modulo 100, four of which consist of numbers that eventually settle at the attractors 0 (cf. A008592), 1 (this sequence), 25 (cf. A017329), or 76 (cf. A376507), and two of which eventually enter one of the 4-cycles 16, 56, 36, 96 (cf. A376508) or 21, 41, 81, 61 (cf. A376509).
The first-order differences of the numbers in this sequence repeat with a fixed period of length four: 6, 36, 6, 2, ...

Examples

			7^2 = 49 -> 49^2 = 1 -> 1^2 = 1 -> ... (mod 100).
		

References

  • Alexander K. Dewdney, Computer-Kurzweil. Mit einem Computer-Mikroskop untersuchen wir ein Objekt von faszinierender Struktur in der Ebene der komplexen Zahlen. In: Spektrum der Wissenschaft, Oct 1985, p. 8-14, here p. 11-13 (Iterations on a finite set), 14 (Iteration diagram).

Crossrefs

Formula

G.f.: x*(1 + 6*x + 36*x^2 + 6*x^3 + x^4)/((1 - x)^2*(1 + x + x^2 + x^3)). - Stefano Spezia, Sep 26 2024

A376507 Natural numbers whose iterated squaring modulo 100 eventually settles at the attractor 76.

Original entry on oeis.org

18, 24, 26, 32, 68, 74, 76, 82, 118, 124, 126, 132, 168, 174, 176, 182, 218, 224, 226, 232, 268, 274, 276, 282, 318, 324, 326, 332, 368, 374, 376, 382, 418, 424, 426, 432, 468, 474, 476, 482, 518, 524, 526, 532, 568, 574, 576, 582, 618, 624, 626, 632, 668, 674
Offset: 1

Views

Author

Martin Renner, Sep 25 2024

Keywords

Comments

The natural numbers decompose into six categories under the operation of repeated squaring modulo 100, four of which consist of numbers that eventually settle at the attractors 0 (cf. A008592), 1 (cf. A376506), 25 (cf. A017329), or 76 (this sequence), and two of which eventually enter one of the 4-cycles 16, 56, 36, 96 (cf. A376508) or 21, 41, 81, 61 (cf. A376509).
The first-order differences of the numbers in this sequence repeat with a fixed period of length four: 6, 2, 6, 36, ...

Examples

			18^2 = 24 -> 24^2 = 76 -> 76^2 = 76 -> ... (mod 100).
		

References

  • Alexander K. Dewdney, Computer-Kurzweil. Mit einem Computer-Mikroskop untersuchen wir ein Objekt von faszinierender Struktur in der Ebene der komplexen Zahlen. In: Spektrum der Wissenschaft, Oct 1985, p. 8-14, here p. 11-13 (Iterations on a finite set), 14 (Iteration diagram).

Crossrefs

Formula

G.f.: 2*x*(9 + 3*x + x^2 + 3*x^3 + 9*x^4)/((1 - x)^2*(1 + x + x^2 + x^3)). - Stefano Spezia, Sep 26 2024
Previous Showing 11-20 of 63 results. Next