cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A096025 Numbers n such that (n+j) mod (2+j) = 1 for j from 0 to 6 and (n+7) mod 9 <> 1.

Original entry on oeis.org

843, 1683, 3363, 4203, 5883, 6723, 8403, 9243, 10923, 11763, 13443, 14283, 15963, 16803, 18483, 19323, 21003, 21843, 23523, 24363, 26043, 26883, 28563, 29403, 31083, 31923, 33603, 34443, 36123, 36963, 38643, 39483, 41163, 42003, 43683
Offset: 1

Views

Author

Klaus Brockhaus, Jun 15 2004

Keywords

Comments

Numbers n such that n mod 840 = 3 and n mod 2520 <> 3.

Examples

			843 mod 2 = 844 mod 3 = 845 mod 4 = 846 mod 5 = 847 mod 6 = 848 mod 7 = 849 mod 8 = 1 and 850 mod 9 = 4, hence 843 is in the sequence.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..44000] | forall{j: j in [0..6] | IsOne((n+j) mod (2+j)) and (n+7) mod 9 ne 1}]; // Bruno Berselli, Apr 11 2013
  • Mathematica
    LinearRecurrence[{1,1,-1},{843,1683,3363},40] (* Harvey P. Dale, Nov 22 2015 *)
  • PARI
    {k=7;m=44000;for(n=1,m,j=0;b=1;while(b&&j
    				

Formula

a(n) = -3*(209+70*(-1)^n-420*n). a(n) = a(n-1)+a(n-2)-a(n-3). G.f.: 3*x*(279*x^2+280*x+281) / ((x-1)^2*(x+1)). - Colin Barker, Apr 11 2013

A096027 Numbers k such that (k+j) mod (2+j) = 1 for j from 0 to 10 and (k+11) mod 13 <> 1.

Original entry on oeis.org

27723, 55443, 83163, 110883, 138603, 166323, 194043, 221763, 249483, 277203, 304923, 332643, 388083, 415803, 443523, 471243, 498963, 526683, 554403, 582123, 609843, 637563, 665283, 693003, 748443, 776163, 803883, 831603, 859323, 887043
Offset: 1

Views

Author

Klaus Brockhaus, Jun 15 2004

Keywords

Comments

Numbers k such that k mod 27720 = 3 and k mod 360360 <> 3.

Examples

			27723 mod 2 = 27724 mod 3 = 27725 mod 4 = 27726 mod 5 = 27727 mod 6 = 27728 mod 7 = 27729 mod 8 = 27730 mod 9 = 27731 mod 10 = 27731 mod 11 = 27731 mod 12 = 1 and 27732 mod 13 = 3, hence 27723 is in the sequence.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..900000] | forall{j: j in [0..10] | IsOne((n+j) mod (2+j)) and (n+11) mod 13 ne 1}]; // Bruno Berselli, Apr 11 2013
  • PARI
    {k=11;m=900000;for(n=1,m,j=0;b=1;while(b&&j
    				

Formula

G.f.: 3*x*(9239*x^12 +9240*x^11 +9240*x^10 +9240*x^9 +9240*x^8 +9240*x^7 +9240*x^6 +9240*x^5 +9240*x^4 +9240*x^3 +9240*x^2 +9240*x +9241) / ((x -1)^2*(x +1)*(x^2 -x +1)*(x^2 +1)*(x^2 +x +1)*(x^4 -x^2 +1)). - Colin Barker, Apr 11 2013

A195319 Three times second hexagonal numbers: 3*n*(2*n+1).

Original entry on oeis.org

0, 9, 30, 63, 108, 165, 234, 315, 408, 513, 630, 759, 900, 1053, 1218, 1395, 1584, 1785, 1998, 2223, 2460, 2709, 2970, 3243, 3528, 3825, 4134, 4455, 4788, 5133, 5490, 5859, 6240, 6633, 7038, 7455, 7884, 8325, 8778, 9243, 9720, 10209, 10710, 11223
Offset: 0

Views

Author

Omar E. Pol, Sep 17 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 9, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. Semi-axis opposite to A094159 in the same spiral.
Sum of the numbers from 2*n to 4*n. - Wesley Ivan Hurt, Nov 27 2015
From Peter M. Chema, Jan 21 2017: (Start)
Also 0 together with the partial sums of A017629.
Digit root is 0 together with period 3: repeat [9,3,9].
Final digits cycle a length period 10: repeat [0,9,0,3,8,5,4,5,8,3]. (End)
Sequence found by reading the line from 0, in the direction 0, 9, ..., in the triangle spiral. - Hans G. Oberlack, Dec 08 2018

Crossrefs

Bisection of A045943.

Programs

Formula

a(n) = 6*n^2 + 3*n = 3*A014105(n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2. - Harvey P. Dale, Oct 13 2013
G.f.: 3*x*(3+x) / (1-x)^3. - Wesley Ivan Hurt, Nov 27 2015
a(n) = A000217(3*n) + 3*A000217(n). - Bruno Berselli, Aug 31 2017
E.g.f.: 3*x*(2*x+3)*exp(x). - G. C. Greubel, Dec 07 2018
From Amiram Eldar, Feb 27 2022: (Start)
Sum_{n>=1} 1/a(n) = 2*(1 - log(2))/3.
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi/2 + log(2) - 2)/3. (End)

A127989 a(n) = 2*n^3 - 2*n + 9.

Original entry on oeis.org

9, 21, 57, 129, 249, 429, 681, 1017, 1449, 1989, 2649, 3441, 4377, 5469, 6729, 8169, 9801, 11637, 13689, 15969, 18489, 21261, 24297, 27609, 31209, 35109, 39321, 43857, 48729, 53949, 59529, 65481, 71817, 78549, 85689, 93249, 101241, 109677, 118569
Offset: 1

Views

Author

Artur Jasinski, Feb 10 2007

Keywords

Comments

All numbers generated by the irreducible polynomial 2*n^3-2*n+9 are composite (indeed, they are multiples of 3). Largest prime factor A127990, smallest prime factor A127991, number of prime factors A127992.

Crossrefs

Cf. A127990, A127991, A127992. Subsequence of A017629.

Programs

  • Magma
    [2*(n-1)*n*(n+1)+9: n in [1..50]]; // Vincenzo Librandi, Sep 13 2011
    
  • Mathematica
    Table[2x^3 - 2x + 9, {x, 1, 100}]
    LinearRecurrence[{4,-6,4,-1}, {9, 21, 57, 129}, 50] (* G. C. Greubel, May 08 2018 *)
  • PARI
    a(n)=2*n^3-2*n+9 \\ Charles R Greathouse IV, Sep 30 2015

Formula

a(n) = 2*(n-1)*n*(n+1)+9 = 3*(2*A007290(n+1)+3).
G.f.: 3*x*(3-5*x+9*x^2-3*x^3)/(1-x)^4. - Bruno Berselli, Sep 09 2011
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Wesley Ivan Hurt, Oct 11 2021

A017638 a(n) = (12n+9)^10.

Original entry on oeis.org

3486784401, 16679880978201, 1531578985264449, 34050628916015625, 362033331456891249, 2446194060654759801, 12157665459056928801, 48398230717929318249, 162889462677744140625, 480682838924478847449
Offset: 0

Views

Author

Keywords

Comments

From Fermat's little theorem, it follows that all terms are congruent to 1 mod 11 except when n is congruent to 2 mod 11 (because for those n, 12*n+9 is a multiple of 11). - Alonso del Arte, Dec 02 2013

Crossrefs

Programs

Formula

a(n) = (12*n+9)^10.
a(n) = A011557(A017629(n)). - Wesley Ivan Hurt, Dec 02 2013
a(n) = 11*a(n-1)-55*a(n-2)+165*a(n-3)-330*a(n-4)+462*a(n-5)-462*a(n-6)+330*a(n-7)-165*a(n-8)+55*a(n-9)-11*a(n-10)+a(n-11). - Wesley Ivan Hurt, Nov 25 2021

A160080 Lodumo_4 of Fibonacci numbers.

Original entry on oeis.org

0, 1, 5, 2, 3, 9, 4, 13, 17, 6, 7, 21, 8, 25, 29, 10, 11, 33, 12, 37, 41, 14, 15, 45, 16, 49, 53, 18, 19, 57, 20, 61, 65, 22, 23, 69, 24, 73, 77, 26, 27, 81, 28, 85, 89, 30, 31, 93, 32, 97, 101, 34, 35, 105, 36, 109, 113, 38, 39, 117, 40, 121, 125, 42, 43, 129, 44, 133, 137, 46
Offset: 0

Views

Author

Philippe Deléham, May 01 2009

Keywords

Comments

Permutation of nonnegative numbers.

Crossrefs

Formula

a(n) = lod_4(A000045(n)).
From Philippe Deléham, Nov 30 2023: (Start)
a(n) = 2*a(n-6) - a(n-12) for n >= 12.
a(6*n) = 4*n, a(6*n+1) = 12*n+1, a(6*n+2) = 12*n+5, a(6*n+3) = 4*n+2, a(6*n+4) = 4*n+3, a(6*n+5) = 12*n+9.
G.f.: (x + 5*x^2 + 2*x^3 + 3*x^4 + 9*x^5 + 4*x^6 + 11*x^7 + 7*x^8 + 2*x^9 + x^10 + 3*x^11) / ((1-x)^2*(1+x+x^2)^2*(1+x^3)^2). (End)

A241747 Triangle read by rows: T(n,k) = (4*n+3)*(4*k+3).

Original entry on oeis.org

9, 21, 49, 33, 77, 121, 45, 105, 165, 225, 57, 133, 209, 285, 361, 69, 161, 253, 345, 437, 529, 81, 189, 297, 405, 513, 621, 729, 93, 217, 341, 465, 589, 713, 837, 961, 105, 245, 385, 525, 665, 805, 945, 1085, 1225, 117, 273, 429, 585, 741, 897, 1053, 1209, 1365, 1521
Offset: 0

Views

Author

Vincenzo Librandi, Apr 29 2014

Keywords

Comments

A016838(n) first diagonal.
A085027(n) second diagonal.
A017629(n) column k=0.
Row sums give the second bisection of A002414: 9, 70, 231, 540, 1045, 1794, 2835, 4216, ... [Bruno Berselli, May 08 2014]

Examples

			Triangle begins:
n\k |   0     1     2    3    4    5     6     7     8     9
----|--------------------------------------------------------
0   |   9;
1   |  21,   49;
2   |  33,   77,  121;
3   |  45,  105,  165, 225;
4   |  57,  133,  209, 285, 361;
5   |  69,  161,  253, 345, 437, 529;
6   |  81,  189,  297, 405, 513, 621,  729;
7   |  93,  217,  341, 465, 589, 713,  837,  961;
8   | 105,  245,  385, 525, 665, 805,  945, 1085, 1225;
9   | 117,  273,  429, 585, 741, 897, 1053, 1209, 1365, 1521;
.....
		

Crossrefs

Programs

  • Magma
    [(4*n+3)*(4*k+3): k in [0..n], n in [0..15]]; /* or, as triangle: */ [[(4*n+3)*(4*k+3): k in [0..n]]: n in [0..10]];
  • Mathematica
    t[n_, k_] := (4 n + 3) (4 k + 3); Table[t[n, k], {n, 0, 10}, {k, n}] // Flatten

Extensions

Edited by Alois P. Heinz and Bruno Berselli, May 08 2014

A330885 Square array T(n,k) read by antidiagonals upwards: T(n,0)=1; T(n,1) = n+1; T(n,2) = 2n+1, T(n,k>2) = T(n,k-1) - T(n,k-2) - T(n,k-3).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, -1, 1, 4, 5, 0, -3, 1, 5, 7, 1, -5, -3, 1, 6, 9, 2, -7, -8, 1, 1, 7, 11, 3, -9, -13, -3, 7, 1, 8, 13, 4, -11, -18, -7, 10, 9, 1, 9, 15, 5, -13, -23, -11, 13, 21, 1, 1, 10, 17, 6, -15, -28, -15, 16, 33, 14, -15
Offset: 0

Views

Author

Bob Selcoe, May 05 2020

Keywords

Examples

			Array starts:
1  1   1  -1   -3   -3    1   7   9   1  -15   -25
1  2   3   0   -5   -8   -3  10  21  14  -17   -52
1  3   5   1   -7  -13   -7  13  33  27  -19   -79
1  4   7   2   -9  -18  -11  16  45  40  -21  -106
1  5   9   3  -11  -23  -15  19  57  53  -23  -133
1  6  11   4  -13  -28  -19  22  69  66  -25  -160
1  7  13   5  -15  -33  -23  25  81  79  -27  -187
		

Crossrefs

Columns k: A000012 (k=0), A000027 (k=1), A005408 (k=2), A023443 (k=3), A165747 (k=4), -A016885 (k=5), -A004767 (k=6), A016777 (k=7), A017629 (k=8), A190991 (k=9).

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[k<3, k*n+1, T[n, k-1] - T[n, k-2] - T[n, k-3]];
    Table[T[n-k, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 26 2020 *)

Formula

T(0,k) = A180735(k-1).
T(n,k) - T(n-1,k) = -A078016(k+1).

A360927 Expansion of the g.f. x*(1 + 3*x + 4*x^2 + 4*x^3)/((1 - x)^2*(1 + x)).

Original entry on oeis.org

0, 1, 4, 9, 16, 21, 28, 33, 40, 45, 52, 57, 64, 69, 76, 81, 88, 93, 100, 105, 112, 117, 124, 129, 136, 141, 148, 153, 160, 165, 172, 177, 184, 189, 196, 201, 208, 213, 220, 225, 232, 237, 244, 249, 256, 261, 268, 273, 280, 285, 292, 297, 304, 309, 316, 321, 328
Offset: 0

Views

Author

Stefano Spezia, Feb 25 2023

Keywords

Comments

The sequence gives the number of "ON" cells in the cellular automaton on a quadrant of a square grid after the n-th stage, where the "ON" cells lie only on the perimeter and the two diagonals of the square.

Examples

			Illustrations for n = 1..8:
      o          o o          o o o
                 o o          o o o
                              o o o
  a(1) = 1    a(2) = 4      a(3) = 9
   o o o o    o o o o o    o o o o o o
   o o o o    o o   o o    o o     o o
   o o o o    o   o   o    o   o o   o
   o o o o    o o   o o    o   o o   o
              o o o o o    o o     o o
                           o o o o o o
  a(4) = 16   a(5) = 21     a(6) = 28
   o o o o o o o       o o o o o o o o
   o o       o o       o o         o o
   o   o   o   o       o   o     o   o
   o     o     o       o     o o     o
   o   o   o   o       o     o o     o
   o o       o o       o   o     o   o
   o o o o o o o       o o         o o
                       o o o o o o o o
     a(7) = 33            a(8) = 40
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,1,-1},{0,1,4,9,16},57]

Formula

a(n) = a(n-1) + a(n-2) - a(n-3) for n > 4.
a(0) = 0, a(1) = 1, a(n) = 6*n - 8 for n even, and a(n) = 6*n - 9 for n odd.
E.g.f.: 4*(x + 2) + (6*x - 8)*cosh(x) + (6*x - 9)*sinh(x).
a(2*n) = A017569(n-1) = 4*A016777(n-1).
a(2*n+1) = A017629(n-1).

A382534 Number of minimum total dominating sets in the n-flower graph.

Original entry on oeis.org

3, 9, 9, 36, 15, 81, 21, 36, 27, 225, 33, 36, 39, 441, 45, 36, 51, 729, 57, 36, 63, 1089, 69, 36, 75, 1521, 81, 36, 87, 2025, 93, 36, 99, 2601, 105, 36, 111, 3249, 117, 36
Offset: 1

Views

Author

Eric W. Weisstein, Mar 30 2025

Keywords

Comments

The flower graph is defined for n >= 5. Sequence extended to n = 1 using the formula.

Crossrefs

Cf. A017557 (4-section), A016946 (4-section), A017629 (4-section).

Programs

  • Mathematica
    Table[Piecewise[{{36, Mod[n, 4] == 0}, {3 n, Mod[n, 2] == 1}, {9 n^2/4, Mod[n, 4] == 2}}], {n, 20}]
    LinearRecurrence[{0, 0, 0, 3, 0, 0, 0, -3, 0, 0, 0, 1}, {3, 9, 9, 36, 15, 81, 21, 36, 27, 225, 33, 36}, 20]

Formula

a(n) = 3*a(n-4)-3*a(n-8)+a(n-12).
G.f.: -3*x*(1+3*x+3*x^2+12*x^3+2*x^4+18*x^5-2*x^6-24*x^7-3*x^8+3*x^9-x^10+12*x^11)/(x-1)^3/(1+x)^3/(x^2+1)^3 . - R. J. Mathar, Apr 02 2025
Previous Showing 11-20 of 20 results.