cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 110 results. Next

A228719 Decimal expansion of 3*Pi/5.

Original entry on oeis.org

1, 8, 8, 4, 9, 5, 5, 5, 9, 2, 1, 5, 3, 8, 7, 5, 9, 4, 3, 0, 7, 7, 5, 8, 6, 0, 2, 9, 9, 6, 7, 7, 0, 1, 7, 3, 0, 5, 1, 8, 3, 0, 1, 6, 3, 9, 6, 2, 5, 0, 6, 3, 4, 9, 2, 5, 8, 4, 9, 6, 6, 7, 5, 5, 3, 8, 4, 6, 8, 9, 8, 4, 3, 7, 7, 1, 7, 2, 5, 3, 9, 9, 1, 7, 6, 8, 2, 0, 8, 9, 5, 2, 0, 5, 2, 7, 0, 2, 4, 0, 7, 8, 9
Offset: 1

Views

Author

Omar E. Pol, Oct 03 2013

Keywords

Comments

With offset 2, decimal expansion of 6*Pi.
6*Pi is also the surface area of a sphere whose diameter equals the square root of 6. More generally x*Pi is also the surface area of a sphere whose diameter equals the square root of x. - Omar E. Pol, Dec 22 2013
The interior angle of a regular pentagon expressed in radians. - Stefano Spezia, May 30 2025

Examples

			3*Pi/5 = 1.8849555921538759430775860299677017305183...
6*Pi = 18.849555921538759430775860299677017305183...
		

Crossrefs

Cf. A000796, A019692, A122952, A019694, A019669 (Pi through 5*Pi).
Cf. A374172.

Programs

Formula

Equals 1/(10*A374172). - Hugo Pfoertner, Jul 16 2024

A094642 Decimal expansion of log(Pi/2).

Original entry on oeis.org

4, 5, 1, 5, 8, 2, 7, 0, 5, 2, 8, 9, 4, 5, 4, 8, 6, 4, 7, 2, 6, 1, 9, 5, 2, 2, 9, 8, 9, 4, 8, 8, 2, 1, 4, 3, 5, 7, 1, 7, 9, 4, 6, 7, 8, 5, 5, 5, 0, 5, 6, 3, 1, 7, 3, 9, 2, 9, 4, 3, 0, 6, 1, 9, 7, 8, 7, 4, 4, 1, 4, 7, 9, 1, 5, 1, 3, 1, 3, 6, 4, 1, 7, 7, 7, 5, 9, 9, 4, 3, 2, 7, 9, 0, 7, 1, 0, 2, 0, 1, 6, 0, 0, 0, 8
Offset: 0

Views

Author

Keywords

Examples

			log(Pi/2) = 0.45158270528945486472619522989488214357179467855505...
		

References

  • George Boros and Victor Moll, Irresistible Integrals: Symbolics, Analysis and Experiments in the Evaluation of Integrals, Cambridge University Press, Cambridge, 2004, Chap. 7.
  • Jonathan Borwein and Peter Borwein, Pi and the AGM, John Wiley & Sons, New York, 1987, Chap. 11.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.3, pp. 43-44.

Crossrefs

Programs

Formula

Equals Sum_{n>=1} zeta(2*n)/(n*2^(2*n)) (cf. Boros & Moll p. 131). - Jean-François Alcover, Apr 29 2013
Equals Re(log(log(I))). - Stanislav Sykora, May 09 2015
Equals Integral_{-oo..+oo} -log(1/2 + i*z)/cosh(Pi*z) dz, where i is the imaginary unit. - Peter Luschny, Apr 08 2018
Equals Integral_{0..Pi/2} (2/(Pi-2*t)-tan(t)) dt. - Clark Kimberling, Jul 10 2020
Equals -Sum_{k>=1} log(1 - 1/(2*k)^2). - Amiram Eldar, Aug 12 2020
Equals Sum_{k>=1} (-1)^(k+1) * log(1 + 1/k). - Amiram Eldar, Jun 26 2021
Equals A053510 - A002162. - R. J. Mathar, Jun 15 2023

A137218 Decimal expansion of the argument of -1 + 2*i.

Original entry on oeis.org

2, 0, 3, 4, 4, 4, 3, 9, 3, 5, 7, 9, 5, 7, 0, 2, 7, 3, 5, 4, 4, 5, 5, 7, 7, 9, 2, 3, 1, 0, 0, 9, 6, 5, 8, 4, 4, 1, 2, 7, 1, 2, 1, 7, 5, 3, 9, 7, 3, 6, 7, 3, 1, 7, 4, 2, 9, 8, 4, 0, 5, 3, 8, 4, 8, 7, 4, 1, 0, 6, 0, 6, 7, 3, 0, 8, 8, 4, 6, 2, 0, 4, 6, 1, 4, 6, 1, 7, 6, 9, 6, 6, 5, 5, 9, 4, 6, 4, 2, 6, 5, 4, 7, 6, 0
Offset: 1

Views

Author

Matt Rieckman (mjr162006(AT)yahoo.com), Mar 06 2008

Keywords

Comments

Gives closed forms for many arctangent values:
arctan(2) = Pi - a, arctan(1/2) = a - Pi/2,
arctan(3) = a - Pi/4, arctan(1/3) = 3*Pi/4 - a,
arctan(7) = 7*Pi/4 - 2*a, arctan(1/7) = 2*a - 5*Pi/4,
arctan(4/3) = 2*a - Pi and arctan(3/4) = 3*Pi/2 - 2*a.
Dihedral angle in the dodecahedron (radians). - R. J. Mathar, Mar 24 2012
Larger interior angle (in radians) of a golden rhombus; A105199 is the smaller interior angle. - Eric W. Weisstein, Dec 17 2018

Examples

			2.0344439357957027354455779231...
		

Crossrefs

Platonic solids' dihedral angles: A137914 (tetrahedron), A156546 (octahedron), A019669 (cube), A236367 (icosahedron). - Stanislav Sykora, Jan 23 2014
Cf. A242723 (same in degrees).
Cf. A105199 (smaller interior angle of the golden rhombus).

Programs

  • Mathematica
    RealDigits[Pi - ArcTan[2], 10, 120][[1]] (* Harvey P. Dale, Aug 08 2014 *)
  • PARI
    default(realprecision, 120);
    acos(-1/sqrt(5)) \\ or
    arg(-1+2*I) \\ Rick L. Shepherd, Jan 26 2014

Formula

Equals Pi - arctan(2) = A000796 - A105199 = 2*A195723.

Extensions

Corrected a typo in the sequence Matt Rieckman (mjr162006(AT)yahoo.com), Feb 05 2010
More terms from Rick L. Shepherd, Jan 26 2014

A019683 Decimal expansion of Pi/16.

Original entry on oeis.org

1, 9, 6, 3, 4, 9, 5, 4, 0, 8, 4, 9, 3, 6, 2, 0, 7, 7, 4, 0, 3, 9, 1, 5, 2, 1, 1, 4, 5, 4, 9, 6, 8, 9, 3, 0, 2, 6, 2, 3, 2, 3, 0, 8, 7, 4, 6, 0, 9, 4, 4, 1, 1, 3, 8, 1, 0, 9, 3, 4, 0, 3, 7, 0, 1, 9, 2, 3, 8, 5, 2, 5, 3, 9, 2, 8, 8, 8, 0, 6, 2, 4, 1, 4, 2, 5, 2, 1, 7, 6, 5, 8, 3, 8, 8, 2, 3, 1, 6
Offset: 0

Views

Author

Keywords

Examples

			Pi/16 = 0.19634954084936207740391521145496893026232308746094411381... - _Vladimir Joseph Stephan Orlovsky_, Dec 02 2009
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.4.2, p. 494.

Crossrefs

Programs

Formula

From Peter Bala, Oct 27 2019: (Start)
Equals Integral_{x = 0..1} x^2*sqrt(1 - x^2) dx = Integral_{x = 0..1} x^3*sqrt(1 - x^8) dx.
Equals Integral_{x = 0..inf} x^2/(1 + x^2)^3 dx. (End)
From Amiram Eldar, Aug 04 2020: (Start)
Equals Sum_{k>=1} sin(k)^3 * cos(k)/k.
Equals Sum_{k>=1} sin(k)^3 * cos(k)^2/k.
Equals Sum_{k>=1} (-1)^(k+1) * sin((2*k-1)/4)/(2*k-1)^2. (End)

A125061 Expansion of psi(q) * psi(q^2) * chi(q^3) * chi(-q^6) in powers of q where psi(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 1, 3, 1, 2, 3, 0, 1, 1, 2, 0, 3, 2, 0, 6, 1, 2, 1, 0, 2, 0, 0, 0, 3, 3, 2, 3, 0, 2, 6, 0, 1, 0, 2, 0, 1, 2, 0, 6, 2, 2, 0, 0, 0, 2, 0, 0, 3, 1, 3, 6, 2, 2, 3, 0, 0, 0, 2, 0, 6, 2, 0, 0, 1, 4, 0, 0, 2, 0, 0, 0, 1, 2, 2, 9, 0, 0, 6, 0, 2, 1, 2, 0, 0, 4, 0, 6, 0, 2, 2, 0, 0, 0, 0, 0, 3, 2, 1, 0, 3, 2, 6, 0, 2
Offset: 0

Views

Author

Michael Somos, Nov 18 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + q + q^2 + 3*q^3 + q^4 + 2*q^5 + 3*q^6 + q^8 + q^9 + 2*q^10 + 3*q^12 + ...
		

References

  • Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 82, Eq. (32.53).

Crossrefs

Programs

  • Mathematica
    s = (EllipticTheta[3, 0, q]^2 + 3*EllipticTheta[3, 0, q^3]^2)/4 + O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Dec 07 2015, from 2nd formula *)
  • PARI
    {a(n) = if( n<1, n==0, sumdiv(n, d, ((d%2) * ((d%3==0)+1)) * (-1)^(d\6)))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); prod( k=1, matsize(A)[1],
         [p, e] = A[k, ]; if( p==2, 1, p==3, 1+e%2*2, p%4==1, e+1, !(e%2) )))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^4 + A)^2 * eta(x^6 + A)^3 / (eta(x + A) * eta(x^3 + A) * eta(x^12 + A)^2), n))};

Formula

Expansion of eta(q^2) * eta(q^4)^2 * eta(q^6)^3 / (eta(q) * eta(q^3) * eta(q^12)^2) in powers of q.
Expansion of (theta_3(q)^2 + 3*theta_3(q^3)^2) / 4 in powers of q.
Euler transform of period 12 sequence [ 1, 0, 2, -2, 1, -2, 1, -2, 2, 0, 1, -2, ...].
Moebius transform is period 12 sequence [ 1, 0, 2, 0, 1, 0, -1, 0, -2, 0, -1, 0, ...].
a(n) is multiplicative with a(2^e) = 1, a(3^e) = 2-(-1)^e, a(p^e) = e+1 if p == 1 (mod 4), a(p^e) == (1-(-1)^e)/2 if p == 3 (mod 4).
G.f.: 1 + Sum_{k>0} (x^k + x^(3*k)) / (1 - x^(2*k) + x^(4*k)).
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 3 (t/i) g(t) where q = exp(2 Pi i t) and g() is g.f. for A122857.
a(12*n + 7) = a(12*n + 11) = 0. a(2*n) = a(n). a(2*n + 1) = A138741(n). a(3*n + 1) = A122865(n). a(3*n + 2) = A122856(n). a(4*n + 1) = A008441(n). a(4*n + 3) = 3 * A008441(n). a(6*n + 1) = A002175(n). a(6*n + 5) = 2 * A121444(n). a(8*n + 1) = A113407(n). a(8*n + 3) = 3 * A113407(n). a(8*n + 5) = 2 * A053692(n). a(8*n + 7) = 6 * A053692(n). a(9*n) = A125061(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/2 (A019669). - Amiram Eldar, Nov 24 2023

A138741 Expansion of q^(-1/2) * eta(q)^3 * eta(q^4) * eta(q^12) / (eta(q^2)^2 * eta(q^3)) in powers of q (unsigned).

Original entry on oeis.org

1, 3, 2, 0, 1, 0, 2, 6, 2, 0, 0, 0, 3, 3, 2, 0, 0, 0, 2, 6, 2, 0, 2, 0, 1, 6, 2, 0, 0, 0, 2, 0, 4, 0, 0, 0, 2, 9, 0, 0, 1, 0, 4, 6, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 6, 2, 0, 2, 0, 1, 6, 4, 0, 0, 0, 0, 6, 2, 0, 0, 0, 4, 3, 2, 0, 2, 0, 2, 6, 0, 0, 0, 0, 3, 0, 2
Offset: 0

Views

Author

Michael Somos, Mar 27 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 3*x + 2*x^2 + x^4 + 2*x^6 + 6*x^7 + 2*x^8 + 3*x^12 + 3*x^13 + ...
G.f. = q + 3*q^3 + 2*q^5 + q^9 + 2*q^13 + 6*q^15 + 2*q^17 + 3*q^25 + 3*q^27 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, DivisorSum[ 2 n + 1, (-1)^Quotient[#, 6] {1, 0, 2, 0, 1, 0}[[Mod[#, 6, 1]]] &]]; (* Michael Somos, Sep 08 2015 *)
    a[ n_] := SeriesCoefficient[ x^(-1/2) (EllipticTheta[ 2, 0, x]^2 + 3 EllipticTheta[ 2, 0, x^3]^2) / 4, {x, 0, n}]; (* Michael Somos, Sep 08 2015 *)
    a[ n_] := If[ n < 0, 0, Times @@ (Which[ # < 3, 1, # == 3, 2 - (-1)^#2, Mod[#, 12] < 6, #2 + 1, True, 1 - Mod[#2, 2]] & @@@ FactorInteger[2 n + 1])]; (* Michael Somos, Sep 08 2015 *)
    QP = QPochhammer; s = QP[q^2]^7*QP[q^3]*QP[q^12]^2 / (QP[q]^3*QP[q^4]^2* QP[q^6]^3) + O[q]^90; CoefficientList[s, q] (* Jean-François Alcover, Nov 24 2015 *)
  • PARI
    {a(n) = if( n<0, 0, sumdiv( 2*n + 1, d, (-1)^(d\6) * [0, 1, 0, 2, 0, 1][d%6 + 1]))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<0, 0, n = 2*n + 1; A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 0, p==3, 2 - (-1)^e, p%12<6, e+1, 1-e%2 )))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^7 * eta(x^3 + A) * eta(x^12 + A)^2 / (eta(x + A)^3 * eta(x^4 + A)^2 * eta(x^6 + A)^3), n))};

Formula

Expansion of q^(-1/2) * (theta_2(q)^2 + 3 * theta_2(q^3)^2) / 4 in powers of q.
Expansion of phi(q) * psi(q) * psi(q^3) / phi(q^3) in powers of q where phi(), psi() are Ramanujan theta functions.
Euler transform of period 12 sequence [ 3, -4, 2, -2, 3, -2, 3, -2, 2, -4, 3, -2, ...].
Moebius transform is period 24 sequence [ 1, -1, 2, 0, 1, -2, -1, 0, -2, -1, -1, 0, 1, 1, 2, 0, 1, 2, -1, 0, -2, 1, -1, 0, ...].
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(3^e) = 1 + (-1)^e, b(p^e) = e+1 if p == 1, 5 (mod 12), b(p^e) = (1+(-1)^e)/2 if p = 7, 11 (mod 12).
G.f. is a period 1 Fourier series which satisfies f(-1 / (48 t)) = 6 (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A132003.
a(6*n + 3) = a(6*n + 5) = 0.
a(n) = (-1)^n * A116604(n). a(2*n) = A008441(n).
a(6*n) = A002175(n). a(6*n + 1) = 3 * A008441(n). a(6*n + 2) = 2 * A121444(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/2 (A019669). - Amiram Eldar, Dec 28 2023

A053300 Continued fraction for Pi/2.

Original entry on oeis.org

1, 1, 1, 3, 31, 1, 145, 1, 4, 2, 8, 1, 6, 1, 2, 3, 1, 4, 1, 5, 1, 41, 1, 2, 3, 7, 1, 1, 1, 27, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 49, 2, 1, 4, 3, 6, 2, 1, 3, 3, 17, 1, 3, 2, 1, 6, 3, 1, 6, 26, 3, 1, 1, 3, 4, 3, 2, 14, 11, 1, 4, 1, 1, 5, 2, 8, 8, 2, 80, 1, 1, 22, 2, 11, 2, 1
Offset: 0

Views

Author

N. J. A. Sloane, Mar 21 2000

Keywords

Examples

			1.57079632679489661923132169... = 1 + 1/(1 + 1/(1 + 1/(3 + 1/(31 + ...)))). - _Harry J. Smith_, May 31 2009
		

Crossrefs

Cf. A001203.
Cf. A019669 (decimal expansion). - Harry J. Smith, May 31 2009

Programs

  • Magma
    R:= RealField(); ContinuedFraction(Pi(R)/2); // G. C. Greubel, May 24 2018
  • Mathematica
    ContinuedFraction[ Pi/2, 100 ]
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(Pi/2); for (n=0, 20000, write("b053300.txt", n, " ", x[n+1])); } \\ Harry J. Smith, May 31 2009
    

A228824 Decimal expansion of 4*Pi/5.

Original entry on oeis.org

2, 5, 1, 3, 2, 7, 4, 1, 2, 2, 8, 7, 1, 8, 3, 4, 5, 9, 0, 7, 7, 0, 1, 1, 4, 7, 0, 6, 6, 2, 3, 6, 0, 2, 3, 0, 7, 3, 5, 7, 7, 3, 5, 5, 1, 9, 5, 0, 0, 0, 8, 4, 6, 5, 6, 7, 7, 9, 9, 5, 5, 6, 7, 3, 8, 4, 6, 2, 5, 3, 1, 2, 5, 0, 2, 8, 9, 6, 7, 1, 9, 8, 9, 0, 2, 4, 2, 7, 8, 6, 0, 2, 7, 3, 6, 9, 3, 6, 5, 4, 3, 8, 5, 7
Offset: 1

Views

Author

Omar E. Pol, Oct 03 2013

Keywords

Comments

With offset 2, decimal expansion of 8*Pi.
8*Pi is also the surface area of a sphere whose diameter equals the square root of 8, hence its radius equals the square root of 2. More generally x*Pi is also the surface area of a sphere whose diameter equals the square root of x. - Omar E. Pol, Dec 18 2013

Examples

			4*Pi/5 = 2.5132741228718345907701147066236023073577...
8*Pi = 25.132741228718345907701147066236023073577...
		

Crossrefs

Cf. A000796, A019692, A122952, A019694, A019669, A228719, A228721 (Pi through 7*Pi).

Programs

A352324 Decimal expansion of 4*Pi / (5*sqrt(10-2*sqrt(5))).

Original entry on oeis.org

1, 0, 6, 8, 9, 5, 9, 3, 3, 2, 1, 1, 5, 5, 9, 5, 1, 1, 3, 4, 2, 5, 1, 8, 4, 3, 7, 2, 5, 0, 6, 8, 8, 2, 6, 3, 9, 9, 0, 1, 4, 5, 0, 9, 2, 5, 2, 6, 6, 5, 2, 4, 5, 8, 6, 0, 0, 6, 6, 6, 3, 2, 5, 6, 3, 7, 9, 6, 2, 1, 1, 4, 9, 6, 7, 9, 0, 7, 4, 9, 1, 3, 2, 2, 7, 8, 0, 3, 8, 7, 7, 9, 4
Offset: 1

Views

Author

Bernard Schott, Mar 12 2022

Keywords

Comments

Cauchy's residue theorem implies that Integral_{x=0..oo} 1/(1 + x^m) dx = (Pi/m) * csc(Pi/m); this is the case m = 5.
The area of a circle circumscribing a unit-area regular decagon.

Examples

			1.0689593321155951134251843725068826399014509252665...
		

References

  • Jean-François Pabion, Éléments d'Analyse Complexe, licence de Mathématiques, page 111, Ellipses, 1995.

Crossrefs

Integral_{x=0..oo} 1/(1+x^m) dx: A019669 (m=2), A248897 (m=3), A093954 (m=4), this sequence (m=5), A019670 (m=6), A352125 (m=8), A094888 (m=10).

Programs

  • Maple
    evalf(4*Pi / (5*(sqrt(10-2sqrt(5)))), 100);
  • Mathematica
    First[RealDigits[N[4Pi/(5Sqrt[10-2Sqrt[5]]), 93]]] (* Stefano Spezia, Mar 12 2022 *)

Formula

Equals Integral_{x=0..oo} 1/(1 + x^5) dx.
Equals (Pi/5) *csc(Pi/5).
Equals (1/2) * A019694 * A121570.
Equals 1/Product_{k>=1} (1 - 1/(5*k)^2). - Amiram Eldar, Mar 12 2022
Equals Product_{k>=2} (1 + (-1)^k/A047209(k)). - Amiram Eldar, Nov 22 2024
Equals 1/A371604 = A377405/5. - Hugo Pfoertner, Nov 22 2024

A004531 Number of integer solutions to x^2 + 4 * y^2 = n.

Original entry on oeis.org

1, 2, 0, 0, 4, 4, 0, 0, 4, 2, 0, 0, 0, 4, 0, 0, 4, 4, 0, 0, 8, 0, 0, 0, 0, 6, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 4, 4, 0, 0, 8, 4, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 8, 4, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 8, 0, 0, 8, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 8, 2, 0, 0, 0, 8, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 12, 4, 0, 0, 8
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + 4*x^4 + 4*x^5 + 4*x^8 + 2*x^9 + 4*x^13 + 4*x^16 + 4*x^17 + 8*x^20 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 120.
  • B. C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, see p. 373 Entry 32.

Crossrefs

Programs

  • Mathematica
    CoefficientList[EllipticTheta[3, 0, x]*EllipticTheta[3, 0, x^4] + O[x]^105, x] (* Jean-François Alcover, Nov 05 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, 2 * qfrep([ 1, 0; 0, 4], n)[n])}; /* Michael Somos, Jul 04 2005 */
    
  • PARI
    {a(n) = local(A, e1, e2, e4); if( n<0, 0, A = x * O(x^n); e1 = eta(x^2 + A); e2 = eta(x^4 + A); e4 = eta(x^8 + A); polcoeff( (e2^12 + e1^8 * e4^4 + 4 * x * e1^4 * e4^8) / (2 * e1^4 * e2^2 * e4^4), n))};
    
  • Sage
    Q = DiagonalQuadraticForm(ZZ, [4, 1])
    Q.representation_number_list(105) # Peter Luschny, Jun 20 2014

Formula

Expansion of (eta(q^2) * eta(q^8))^5 / (eta(q)^2 * eta(q^4)^4 * eta(q^16)^2) in powers of q.
Expansion of phi(x) * phi(x^4) = phi(x^4)^2 + 2 * x * psi(x^4)^2 in powers of x where phi(x), psi(x) are Ramanujan theta functions.
Expansion of (theta2^2(q^2) + theta3^2(q^2) + theta4^2(q^2)) / 2 in powers of q.
Euler transform of period 16 sequence [ 2, -3, 2, 1, 2, -3, 2, -4, 2, -3, 2, 1, 2, -3, 2, -2, ...]. - Michael Somos, Jun 20 2014
G.f.: Sum_{i,j} x^(i^2 + 4 * j^2).
a(4*n + 2) = a(4*n + 3) = 0. a(4*n) = A004018(n). a(4*n + 1) = A004020(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/2 (A019669). - Amiram Eldar, Oct 15 2022
Previous Showing 21-30 of 110 results. Next