cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A038034 Number of compositions (ordered partitions) of 1 into {1/1, 1/2, 1/3, ..., 1/n}.

Original entry on oeis.org

1, 2, 3, 7, 8, 52, 53, 288, 1209, 5247, 5248, 71395, 71396, 375779, 6957533, 52310862, 52310863, 1152622553, 1152622554, 45575902465, 1296407854551, 1580527987951, 1580527987952, 73245316681199, 584407520822198, 639887219617512, 11355804443049274, 516959218512416104, 516959218512416105, 29213061562205847736, 29213061562205847737, 886912328033731357358, 31286298736622399674197, 31349361777225437765677
Offset: 1

Views

Author

Christian G. Bower, Jun 15 1998

Keywords

Comments

a(n) = number of Egyptian fractions 1 = 1/x_1 + ... + 1/x_k (for any k), with max{x_i}<=n.

Examples

			a(4) = 7 since there are seven compositions into parts {1/1, 1/2, 1/3, 1/4}:
1 = 1/1, 1 = 1/2 + 1/2, 1 = 1/3 + 1/3 + 1/3, 1 = 1/2 + 1/4 + 1/4, 1 = 1/4 + 1/2 + 1/4, 1 = 1/4 + 1/4 + 1/2, and 1 = 1/4 + 1/4 + 1/4 + 1/4.
		

Crossrefs

Formula

a(n) = Sum_{i=1..n} A092667(i).
a(p) = a(p-1) + 1 for p prime. - Chai Wah Wu, Dec 27 2024

Extensions

More terms from Max Alekseyev, Mar 02 2004

A037268 Sum of reciprocals of digits = 1.

Original entry on oeis.org

1, 22, 236, 244, 263, 326, 333, 362, 424, 442, 623, 632, 2488, 2666, 2848, 2884, 3366, 3446, 3464, 3636, 3644, 3663, 4288, 4346, 4364, 4436, 4444, 4463, 4634, 4643, 4828, 4882, 6266, 6336, 6344, 6363, 6434, 6443, 6626, 6633, 6662, 8248, 8284, 8428, 8482, 8824
Offset: 1

Views

Author

Keywords

Comments

This sequence has 1209 terms.
Intersection of A037264 and A034708: A214949(a(n))*A214950(a(n))*A168046(a(n)) = 1. - Reinhard Zumkeller, Aug 02 2012

Crossrefs

Subsequence of A214959.

Programs

  • Haskell
    a037268 n = a037268_list !! (n-1)
    a037268_list = filter ((== 1) . a168046) $
                          takeWhile (<= 999999999) a214959_list
    -- Reinhard Zumkeller, Aug 02 2012
    
  • Maple
    A037268 := proc(n) option remember: local d,k: if(n=1)then return 1: fi: for k from procname(n-1)+1 do d:=convert(k,base,10): if(not member(0,d) and add(1/d[j],j=1..nops(d))=1)then return k: fi: od: end: seq(A037268(n),n=1..50); # Nathaniel Johnston, May 28 2011
  • Mathematica
    Select[Range[10000],Total[1/(IntegerDigits[#]/.(0->1))]==1&] (* Harvey P. Dale, Jul 23 2025 *)
  • PARI
    lista(nn) = {for (n=1, nn, d = digits(n); if (vecmin(d) && (sum(k=1, #d, 1/d[k])==1), print1(n, ", ")););} \\ Michel Marcus, Jul 06 2015
    
  • Python
    from fractions import Fraction
    def ok(n):
      sn = str(n)
      return False if '0' in sn else sum(Fraction(1, int(d)) for d in sn) == 1
    def aupto(limit): return [m for m in range(1, limit+1) if ok(m)]
    print(aupto(8824)) # Michael S. Branicky, Jan 22 2021

Extensions

More terms from Christian G. Bower, Jun 15 1998
Two missing terms inserted by Nathaniel Johnston, May 28 2011

A092666 a(n) = number of Egyptian fractions 1 = 1/x_1 + ... + 1/x_k (for any k), with 0 < x_1 <= ... <= x_k = n.

Original entry on oeis.org

1, 1, 1, 2, 1, 7, 1, 10, 10, 26, 1, 107, 1, 83, 375, 384, 1, 1418, 1, 4781, 7812, 1529, 1, 33665, 9789, 4276, 27787, 168107, 1, 584667, 1, 586340, 1177696, 52334, 5285597, 14746041, 1, 218959, 13092673, 84854683, 1, 279357910, 1, 491060793, 2001103921
Offset: 1

Views

Author

Max Alekseyev, Mar 02 2004

Keywords

Examples

			a(4) = 2 since there are two fractions 1=1/2+1/4+1/4 and 1=1/4+1/4+1/4+1/4.
		

Crossrefs

Formula

a(n) = A020473(n) - A020473(n-1).
a(n) = 1 if n is prime.

Extensions

Edited by Max Alekseyev, May 05 2010

A092670 a(n) = number of Egyptian fractions 1 = 1/x_1 + ... + 1/x_k (for any k), 0

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 6, 6, 6, 11, 11, 22, 22, 22, 22, 41, 41, 41, 41, 114, 114, 200, 200, 200, 363, 363, 566, 852, 852, 852, 852, 1655, 1655, 3054, 3054, 3054, 5777, 5777, 5777, 10647, 10647, 10647, 10647, 19436, 19436, 33373, 48360, 90441
Offset: 1

Views

Author

Max Alekseyev, Mar 02 2004

Keywords

Examples

			a(6)=2 since there are two fractions 1=1/1 and 1=1/2+1/3+1/6.
		

Crossrefs

Formula

a(n)=Sum(A092669(i), i=1..n)

Extensions

More terms from T. Suzuki (suzuki(AT)scio.co.jp), Nov 24 2006

A208480 Number of representations of n as m_1/1 + m_2/2 + ... + m_n/n where m_i are nonnegative integers.

Original entry on oeis.org

1, 3, 10, 55, 196, 2730, 10032, 108999, 973258, 20780331, 79309308, 2614200602, 10073335754, 288845706742, 11805287917646, 254331289285523, 997748503737330, 45462847634946017, 179126790937098750, 9868487079517742715, 566191988798860895880, 24134174584419467066865
Offset: 1

Views

Author

Brendan McKay and Max Alekseyev, May 07 2012

Keywords

Comments

Number of unordered partitions of n into reciprocals of positive integers <= n.

Crossrefs

Extensions

More terms from Jinyuan Wang, Dec 12 2024

A119983 Number of ways to partition 1 into reduced fractions i/j with j <= n.

Original entry on oeis.org

1, 2, 4, 7, 13, 22, 36, 59, 107, 189, 244, 494, 594, 1063, 3276, 5508, 5804, 12427, 12916, 42411, 131773, 167588, 168842, 428013, 839368, 1015502, 1968162, 5787287, 5791851, 15163759, 15170600, 28838713, 75983560, 82753548, 486356263, 1158442727, 1158464363
Offset: 1

Views

Author

Keywords

Comments

The reduced fractions are the Farey fractions of order n (A005728). - Robert G. Wilson v, Aug 30 2010

Examples

			a(3) = 4; 1 = 1/1 = 1/2 + 1/2 = 2/3 + 1/3 = 1/3 + 1/3 + 1/3.
		

Crossrefs

Cf. A000041, A020473, A115855 (one less), A115856.
Cf. A154886, A154888. - Reinhard Zumkeller, Jan 17 2009

Programs

  • Mathematica
    Farey[n_] := Union@ Flatten@ Table[a/b, {b, n}, {a, b}]; f[n_] := Length@ IntegerPartitions[1, All, Farey@ n]; Array[f, 27] (* Robert G. Wilson v, Aug 30 2010 *)

Formula

For p prime, a(p) = a(p-1) + P(p) - 1, where P is the partition function (A000041).

Extensions

Definition corrected by Reinhard Zumkeller, Jan 17 2009
a(21)-a(27) from Robert G. Wilson v, Aug 30 2010
More terms from Jinyuan Wang, Dec 12 2024

A212606 Number of distinct sums <= 1 of reciprocals of positive integers <= n.

Original entry on oeis.org

1, 2, 3, 6, 10, 26, 34, 103, 175, 393, 599, 2015, 2551, 8681, 14254, 19620, 34700, 129557, 161272, 595304, 695175, 1094164, 1903859, 7654850, 9413484, 29625309
Offset: 0

Views

Author

Max Alekseyev, May 22 2012

Keywords

Examples

			a(3) = 6 counts numbers { 0, 1/3, 1/2, 2/3, 5/6, 1 }, each of which is can be represented as the sum of reciprocals 1/1, 1/2, and 1/3.
		

Crossrefs

For distinct sums of distinct reciprocals, see A212607.

Extensions

a(24)-a(25) from Dexter Senft, Feb 07 2019

A212607 Number of distinct sums <= 1 of distinct reciprocals of integers <= n.

Original entry on oeis.org

1, 2, 3, 5, 8, 14, 21, 38, 70, 129, 238, 440, 504, 949, 1790, 2301, 4363, 8272, 12408, 23604, 26675, 45724, 87781, 168549, 181989, 351076, 677339, 1306894, 1399054, 2709128, 2795144, 5423805, 10525050
Offset: 0

Views

Author

Max Alekseyev, May 22 2012

Keywords

Examples

			a(3) = 5 counts numbers { 0, 1/3, 1/2, 5/6, 1 }, each of which is can be represented as the sum of distinct reciprocals 1/1, 1/2, and 1/3.
		

Crossrefs

For possibly non-distinct reciprocals, see A212606.

Programs

  • Maple
    s:= proc(n) option remember;
          `if`(n=0, {0}, map(x-> `if`(n-1 nops(s(n)):
    seq(a(n), n=0..20);  # Alois P. Heinz, May 23 2012
  • Mathematica
    s[_] := s[n] = If[n == 0, {0}, If[n-1 < n*#, #, {#, # + 1/n}]& /@ s[n-1] // Flatten];
    a[n_] := Length[s[n]];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 32}] (* Jean-François Alcover, May 13 2019, after Alois P. Heinz *)

Extensions

a(27)-a(32) from Alois P. Heinz, May 23 2012

A212657 Number of subsets of {1,2,...,n} with the sum of reciprocals <= 1.

Original entry on oeis.org

1, 2, 3, 5, 8, 14, 26, 46, 83, 151, 276, 503, 921, 1689, 3113, 5730, 10549, 19441, 35868, 66209, 122316, 226157, 418373, 774394, 1434130, 2657246, 4925837, 9135444, 16949660, 31460444, 58415377, 108502932, 201604081, 374708242, 696650259, 1295562800, 2410001851, 4484208954, 8345621293
Offset: 0

Views

Author

Max Alekseyev, May 23 2012

Keywords

Comments

The number of distinct sums of reciprocals is given by A212607.
a(n) grows as 2^(b*n) with b=0.911... (Tikhomirov et al. 2017).

Crossrefs

Cf. A212658 (reciprocals can appear multiple times).

Programs

  • PARI
    { A212657(n) = my(L=lcm(vector(n,i,i))); polcoeff( prod(i=1,n, 1+x^(L/i)+O(x^(L+1)) )/(1-x), L); }

Extensions

a(32)-a(35) from Alois P. Heinz, May 23 2012
a(36)-a(95) from Robert Gerbicz, May 23 2012

A378270 Number of partitions of 1 into {1/1^2, 1/2^2, 1/3^2, ..., 1/n^2}.

Original entry on oeis.org

1, 2, 3, 7, 8, 58, 59, 259, 664, 3427, 3428, 73351, 73352, 298785, 7060868, 43070304, 43070305, 901194373, 901194374, 32808600352, 1204438945226, 2459587779124, 2459587779125, 96010353352980
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 21 2024

Keywords

Comments

From David A. Corneth, Nov 24 2024: (Start)
Primes n/2 < p <= n occur in exactly one solution namely (p^2) * (1/p^2).
Proof: If the numerator k of k/p^2 is less than p^2 then p divides the denominator of the sum of the Egyptian fractions as p divides no other number <= n. But the goal is have sum 1 i.e. denominator 1 so p cannot be a divisor of the denominator. Consequently this can be reduced to "Number of partitions of 1 into {1/1^2, 1/2^2, ..., 1/(n/2)^2, ..., 1/n^2}" plus number of primes n/2 < p <= n. The denominators for the first part can be cleared turning this into a partitioning problem of positive integers. (End)

Examples

			a(4) = 7 because we have 16 * (1/16) = 12 * (1/16) + 1/4 = 8 * (1/16) + 2 * (1/4) = 4 * (1/16) + 3 * (1/4) = 9 * (1/9) = 4 * (1/4) = 1.
From _David A. Corneth_, Nov 24 2024: (Start)
To find a(12) we can rewrite the problem as "Number of partitions of 1 into {1/1^2, 1/2^2, 1/3^2, 1/4^2, 1/5^2, 1/6^2, 1/8^2, 1/9^2, 1/10^2, 1/12^2} + |{7, 11}|". The lcm of (1^2, 2^2, 3^2, 4^2, 5^2, 6^2, 8^2, 9^2, 10^2, 12^2) is 129600. So this comes a partition problem of (number of partitions of 129600 into parts 129600, 32400, 14400, 8100, 5184, 3600, 2025, 1600, 1296, 900) + |{7, 11}|. (End)
		

Crossrefs

Formula

a(p) = a(p-1) + 1 for prime p. - David A. Corneth, Nov 22 2024

Extensions

a(12)-a(21) from David A. Corneth, Nov 22 2024
a(22)-a(24) from Jinyuan Wang, Dec 11 2024
Showing 1-10 of 22 results. Next