cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 75 results. Next

A146951 Numbers that are congruent to 0 or 6 mod 10.

Original entry on oeis.org

0, 6, 10, 16, 20, 26, 30, 36, 40, 46, 50, 56, 60, 66, 70, 76, 80, 86, 90, 96, 100, 106, 110, 116, 120, 126, 130, 136, 140, 146, 150, 156, 160, 166, 170, 176, 180, 186, 190, 196, 200, 206, 210, 216, 220, 226, 230, 236, 240, 246, 250, 256, 260, 266, 270, 276, 280
Offset: 0

Views

Author

Paul Curtz, Nov 03 2008

Keywords

Comments

Rank of terms of A061047 ending in with 0.

Crossrefs

Programs

  • Magma
    I:=[0, 6, 10]; [n le 3 select I[n] else Self(n-1)+Self(n-2)-Self(n-3): n in [1..50]]; // Vincenzo Librandi, May 18 2012
  • Mathematica
    CoefficientList[Series[x*(6+4*x)/((1-x)^2*(1+x)),{x,0,50}],x] (* Vincenzo Librandi, May 18 2012 *)

Formula

a(n) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=6 and b(k) = 5*2^k = A020714(k) for k > 0. - Philippe Deléham, Oct 18 2011
From Colin Barker, May 15 2012: (Start)
a(n) = 1/2 - (-1)^n/2 + 5*n.
a(n) = a(n-1) + a(n-2) - a(n-3).
G.f.: x*(6+4*x)/((1-x)^2*(1+x)). (End)
E.g.f.: 5*x*exp(x) + sinh(x). - Stefano Spezia, May 14 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = log(5)/8 - sqrt(1-2/sqrt(5))*Pi/20 - log(phi)/(4*sqrt(5)), where phi is the golden ratio (A001622). - Amiram Eldar, Sep 15 2022

Extensions

Replaced definition by a comment from Philippe Deléham, Oct 18 2011. Afer the change this becomes a list, but it is better to keep the offset as 0. - N. J. A. Sloane, Sep 08 2022

A147675 Divide by 2, multiply by 4, repeat.

Original entry on oeis.org

10, 5, 20, 10, 40, 20, 80, 40, 160, 80, 320, 160, 640, 320, 1280, 640, 2560, 1280, 5120, 2560, 10240, 5120, 20480, 10240, 40960, 20480, 81920, 40960, 163840, 81920, 327680, 163840, 655360, 327680, 1310720, 655360, 2621440, 1310720, 5242880
Offset: 1

Views

Author

N. J. A. Sloane, Apr 21 2009

Keywords

Comments

A147675-A147678 are from a quiz that someone asked me to help them with.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 2}, {10, 5}, 50] (* Paolo Xausa, Jan 30 2024 *)

Formula

From R. J. Mathar, Apr 22 2009: (Start)
a(n) = 2*a(n-2) = 5*A135530(n-1).
G.f.: 5*x*(2+x)/(1-2*x^2). (End)
From Amiram Eldar, Feb 02 2024: (Start)
Sum_{n>=1} 1/a(n) = 3/5.
Sum_{n>=1} (-1)^n/a(n) = 1/5. (End)

Extensions

More terms from R. J. Mathar, Apr 22 2009

A164682 a(n) = 2*a(n-2) for n > 2; a(1) = 5, a(2) = 8.

Original entry on oeis.org

5, 8, 10, 16, 20, 32, 40, 64, 80, 128, 160, 256, 320, 512, 640, 1024, 1280, 2048, 2560, 4096, 5120, 8192, 10240, 16384, 20480, 32768, 40960, 65536, 81920, 131072, 163840, 262144, 327680, 524288, 655360, 1048576, 1310720, 2097152, 2621440, 4194304
Offset: 1

Views

Author

Klaus Brockhaus, Aug 21 2009

Keywords

Comments

Interleaving of A020714 and A000079 without initial terms 1, 2, 4.
First differences are in A162255.
Binomial transform is A135532 without initial terms -1, 3. Fourth binomial transform is A164537.

Crossrefs

Equals A094958 (numbers of the form 2^n or 5*2^n) without initial terms 1, 2, 4.
Cf. A020714 (5*2^n), A000079 (powers of 2), A162255, A135532, A164537.

Programs

  • Magma
    [ n le 2 select 2+3*n else 2*Self(n-2): n in [1..40] ];
  • Mathematica
    LinearRecurrence[{0,2},{5,8},60] (* Harvey P. Dale, Jul 20 2022 *)

Formula

a(n) = (9-(-1)^n)*2^(1/4*(2*n-5+(-1)^n)).
G.f.: x*(5+8*x)/(1-2*x^2).

A303404 a(0) = 0, a(1) = 1; for n >= 1, a(2*n) = a(2*n-1) - 2*a(n), a(2*n+1) = n - 2*a(n).

Original entry on oeis.org

0, 1, -1, -1, 1, 4, 6, 5, 3, 2, -6, -3, -15, -6, -16, -3, -9, 2, -2, 5, 17, 22, 28, 17, 47, 42, 54, 25, 57, 46, 52, 21, 39, 34, 30, 13, 17, 22, 12, 9, -25, -14, -58, -23, -79, -34, -68, -11, -105, -70, -154, -59, -167, -82, -132, -23, -137, -86, -178, -63, -167, -74, -116, -11, -89, -46, -114, -35, -95, -26, -52, 9
Offset: 0

Views

Author

Altug Alkan, Aug 19 2018

Keywords

Comments

Inspired by A002487.
A020714 is generally determinative for block structures of this sequence.

Crossrefs

Programs

  • Maple
    A[0]:= 0: A[1]:= 1:
    for n from 1 to 50 do
      A[2*n]:= A[2*n-1]-2*A[n];
      A[2*n+1]:= n - 2*A[n]
    od:
    seq(A[i],i=0..101); # Robert Israel, Aug 20 2018
  • PARI
    a(n)=if(n<=1, n, if(n%2==0, a(n-1)-2*a(n/2), (n-1)/2-2*a((n-1)/2)));

Formula

G.f. g(x) satisfies g(x) + 2*g(x^2)*(1+x+x^2) = x + x^2 + x^3 + x^4 + 2*x^5. - Robert Israel, Aug 20 2018

A002066 a(n) = 10*4^n.

Original entry on oeis.org

10, 40, 160, 640, 2560, 10240, 40960, 163840, 655360, 2621440, 10485760, 41943040, 167772160, 671088640, 2684354560, 10737418240, 42949672960, 171798691840, 687194767360, 2748779069440, 10995116277760, 43980465111040, 175921860444160, 703687441776640, 2814749767106560
Offset: 0

Views

Author

Keywords

Crossrefs

Pairwise sums of A081294.

Programs

Formula

From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 4*a(n-1), n > 0; a(0)=10.
G.f.: 10/(1-4*x). (End)
From Elmo R. Oliveira, Apr 02 2025: (Start)
E.g.f.: 10*exp(4*x).
a(n) = 5*A004171(n) = 2*A003947(n+1) = A020714(n)*A000079(n+1). (End)

A063757 G.f.: (1+3*x+2*x^2)/((1-x)*(1-2*x^2)).

Original entry on oeis.org

1, 4, 8, 14, 22, 34, 50, 74, 106, 154, 218, 314, 442, 634, 890, 1274, 1786, 2554, 3578, 5114, 7162, 10234, 14330, 20474, 28666, 40954, 57338, 81914, 114682, 163834, 229370, 327674, 458746, 655354, 917498, 1310714, 1835002, 2621434
Offset: 0

Views

Author

N. J. A. Sloane, Aug 14 2001

Keywords

References

  • P. de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 158.

Programs

  • Mathematica
    CoefficientList[Series[(1+3x+2x^2)/((1-x)(1-2x^2)),{x,0,40}],x] (* or *) LinearRecurrence[{1,2,-2},{1,4,8},41] (* Harvey P. Dale, Jun 05 2012 *)

Formula

a(0)=1, a(1)=4, a(2)=8, a(n)=a(n-1)+2*a(n-2)-2*a(n-3) From Harvey P. Dale, Jun 05 2012
a(n)=2^((n-3)/2)*((5*Sqrt[2]-7)*(-1)^n+7+5*Sqrt[2])-6 From Harvey P. Dale, Jun 05 2012
a(2*n) = 7*2^n - 6 = A048489(n), a(2*n+1) = 10*2^n - 6 = A020714(n+1) - 6, a(n) = A070875(n+1) - 6. - Philippe Deléham, Apr 13 2013

A154407 a(n) = 5*2^(n-1) + 3*6^n/2.

Original entry on oeis.org

4, 14, 64, 344, 1984, 11744, 70144, 420224, 2520064, 15117824, 90701824, 544200704, 3265183744, 19591061504, 117546287104, 705277558784, 4231665025024, 25389989494784, 152339935657984, 914039611326464, 5484237662715904
Offset: 0

Views

Author

Paul Curtz, Jan 09 2009

Keywords

Comments

One of the diagonals of the n-th differences of A154383.

Examples

			Sequence A154383 and its k-th iterated difference in the k-th row are
...1.....0.....4.....2.....16......8.....64.....32....256....128...1024.
..-1.....4....-2....14.....-8.....56....-32....224...-128....896...-512.
...5....-6....16...-22.....64....-88....256...-352...1024..-1408...4096.
.-11....22...-38....86...-152....344...-608...1376..-2432...5504..-9728.
..33...-60...124..-238....496...-952...1984..-3808...7936.-15232..31744.
.-93...184..-362...734..-1448...2936..-5792..11744.-23168..46976.-92672.
.277..-546..1096.-2182...4384..-8728..17536.-34912..70144.-139648.280576.
The sequence is the diagonal T(k,k+2) in this array.
		

Programs

Formula

a(n+1) = 6*a(n) - 10*2^n.
a(n) = 6*a(n) - 5*A020714(n+1).
G.f.: 2*(2 - 9*x)/((6*x-1)*(2*x-1)). - R. J. Mathar, May 21 2009
E.g.f.: (1/2)*( 5*exp(2*x) + 3*exp(6*x) ). - G. C. Greubel, Sep 16 2016

Extensions

Edited by R. J. Mathar, May 21 2009

A253145 Triangular numbers (A000217) omitting the term 1.

Original entry on oeis.org

0, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780, 820, 861, 903, 946, 990, 1035, 1081, 1128, 1176, 1225, 1275
Offset: 0

Views

Author

Paul Curtz, Mar 23 2015

Keywords

Comments

The full triangle of the inverse Akiyama-Tanigawa transform applied to (-1)^n*A062510(n)=3*(-1)^n*A001045(n) yielding a(n) is
0, 3, 6, 10, 15, 21, 28, 36, ...
-3, -6, -12, -20, -30, -42, -56, ... essentially -A002378
3, 12, 24, 40, 60, 84, ... essentially A046092
-9, -24, -48, -80, -120, ... essentially -A033996
15, 48, 96, 160, ...
-33, -96, -192, ...
63, 192, ...
-129, ...
etc.
First column: (-1)^n*A062510(n).
The following columns are multiples of A122803(n)=(-2)^n. See A007283(n), A091629(n), A020714(n+1), A110286, A175805(n), 4*A005010(n).
An autosequence of the first kind is a sequence whose main diagonal is A000004 = 0's.
b(n) = 0, 0 followed by a(n) is an autosequence of the first kind.
The successive differences of b(n) are
0, 0, 0, 3, 6, 10, 15, 21, ...
0, 0, 3, 3, 4, 5, 6, 7, ... see A194880(n)
0, 3, 0, 1, 1, 1, 1, 1, ...
3, -3, 1, 0, 0, 0, 0, 0, ...
-6, 4, -1, 0, 0, 0, 0, 0, ...
10, -5, 1, 0, 0, 0, 0, 0, ...
-15, 6, -1, 0, 0, 0, 0, 0, ...
21, -7, 1, 0, 0, 0, 0, 0, ...
The inverse binomial transform (first column) is the signed sequence. This is general.
Also generalized hexagonal numbers without 1. - Omar E. Pol, Mar 23 2015

Crossrefs

Programs

Formula

Inverse Akiyama-Tanigawa transform of (-1)^n*A062510(n).
a(n) = (n+1)*(n+2)/2 for n > 0. - Charles R Greathouse IV, Mar 23 2015
a(n+1) = 3*A001840(n+1) + A022003(n).
a(n) = A161680(n+2) for n >= 1. - Georg Fischer, Oct 30 2018
From Stefano Spezia, May 28 2025: (Start)
G.f.: x*(3 - 3*x + x^2)/(1 - x)^3.
E.g.f.: exp(x)*(2 + 4*x + x^2)/2 - 1. (End)

A316528 a(n) = 3*a(n-1) - a(n-2) - 2*a(n-3) for n > 2, a(0)=1, a(1)=4, a(2)=10.

Original entry on oeis.org

1, 4, 10, 24, 54, 118, 252, 530, 1102, 2272, 4654, 9486, 19260, 38986, 78726, 158672, 319318, 641830, 1288828, 2586018, 5185566, 10393024, 20821470, 41700254, 83493244, 167136538, 334515862, 669424560, 1339484742, 2679997942, 5361659964, 10726012466, 21456381550
Offset: 0

Views

Author

Vincenzo Librandi, Jul 14 2018

Keywords

Comments

Row sums of triangle A316939.

Crossrefs

Programs

  • GAP
    a:=[1,4,10];; for n in [4..35] do a[n]:=3*a[n-1]-a[n-2]-2*a[n-3]; od; a; # Muniru A Asiru, Jul 14 2018
    
  • Magma
    I:=[1,4,10]; [n le 3 select I[n] else 3*Self(n-1)-Self(n-2)-2*Self(n-3): n in [1..40]];
    
  • Maple
    seq(coeff(series((1+x-x^2)/(1-3*x+x^2+2*x^3), x,n+1),x,n),n=0..35); # Muniru A Asiru, Jul 14 2018
  • Mathematica
    RecurrenceTable[{a[n] == 3 a[n - 1] - a[n - 2] - 2 a[n - 3], a[0] == 1, a[1] == 4, a[2] == 10}, a, {n, 0, 40}]
    Table[5 2^n - 2 Fibonacci[n + 3], {n, 0, 40}] (* Bruno Berselli, Jul 16 2018 *)
    LinearRecurrence[{3,-1,-2},{1,4,10},40] (* Harvey P. Dale, Jul 18 2020 *)
  • PARI
    Vec((1 + x - x^2)/((1 - 2*x)*(1 - x - x^2)) + O(x^40)) \\ Colin Barker, Jul 23 2018

Formula

G.f.: (1 + x - x^2)/((1 - 2*x)*(1 - x - x^2)).
a(n) = 2*A116712(n) for n > 0, a(0)=1.
a(n) = 5*2^n - 2*Fibonacci(n+3). - Bruno Berselli, Jul 16 2018
a(n) = (5*2^n - (2^(1-n)*((1-sqrt(5))^n*(-2+sqrt(5)) + (1+sqrt(5))^n*(2+sqrt(5))))/sqrt(5)). - Colin Barker, Jul 23 2018

A340717 Lexicographically earliest sequence of nonnegative integers with as many distinct values as possible such that for any n >= 0, a(rev(n)) = a(n) (where rev(n) = A030101(n) corresponds to the binary reversal of n).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 6, 4, 7, 1, 8, 5, 9, 3, 10, 6, 11, 2, 9, 6, 12, 4, 11, 7, 13, 1, 14, 8, 15, 5, 16, 9, 17, 3, 16, 10, 18, 6, 19, 11, 20, 2, 15, 9, 21, 6, 18, 12, 22, 4, 17, 11, 22, 7, 20, 13, 23, 1, 24, 14, 25, 8, 26, 15, 27, 5, 28, 16
Offset: 0

Views

Author

Rémy Sigrist, Jan 17 2021

Keywords

Comments

The condition "with as many distinct values as possible" means here that for any distinct m and n, provided the orbits of m and n under the map x -> rev(x) do not merge, then a(m) <> a(n).

Examples

			The first terms, alongside rev(n), are:
  n   a(n)  rev(n)
  --  ----  ------
   0     0       0
   1     1       1
   2     1       1
   3     2       3
   4     1       1
   5     3       5
   6     2       3
   7     4       7
   8     1       1
   9     5       9
  10     3       5
  11     6      13
  12     2       3
  13     6      11
  14     4       7
  15     7      15
		

Crossrefs

See A340716 for similar sequences.

Programs

  • PARI
    See Links section.

Formula

a(2*n) = a(n).
a(n) = 1 iff n is a power of 2.
a(n) = 2 iff n belongs to A007283.
a(n) = 3 iff n belongs to A020714.
a(n) = 4 iff n belongs to A005009.
a(n) = 5 iff n belongs to A005010.
a(A340718(n)) = n (and this is the first occurrence of n in the sequence).
Previous Showing 41-50 of 75 results. Next