cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A082601 Tribonacci array: to get the next row, right-adjust the previous 3 rows and add them, then append a final 0.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 0, 0, 1, 4, 6, 2, 0, 0, 1, 5, 10, 7, 1, 0, 0, 1, 6, 15, 16, 6, 0, 0, 0, 1, 7, 21, 30, 19, 3, 0, 0, 0, 1, 8, 28, 50, 45, 16, 1, 0, 0, 0, 1, 9, 36, 77, 90, 51, 10, 0, 0, 0, 0, 1, 10, 45, 112, 161, 126, 45, 4, 0, 0, 0, 0, 1, 11, 55, 156, 266, 266, 141, 30, 1, 0
Offset: 0

Views

Author

Gary W. Adamson, May 24 2003

Keywords

Comments

Coefficients of tribonacci polynomials: t_0 = 1, t_1 = x, t_2 = x^2 + x, t_n = x*(t_{n-1} + t_{n-2} + t_{n-3}).
Row sums are tribonacci numbers.
From Petros Hadjicostas, Jun 10 2020: (Start)
To prove a Swamy inequality for the above tribonacci polynomials, we use Guilfoyle's (1967) technique. We write t_n as the determinant of an n X n matrix and then apply Hadamard's inequality.
Since x*t_{n-3} + x*t_{n-2} + x*t_{n-1} - t_n = 0 (with the above initial conditions), we may prove that for n >= 3, t_n = det(A_n), where A_n is the n X n matrix A_n = [[x,-1,0,0,0,...,0,0,0,0,0], [x,x,-1,0,0,...,0,0,0,0,0], [x,x,x,-1,0,...,0,0,0,0,0], [0,x,x,x,-1,...,0,0,0,0,0], ..., [0,0,0,0,0,...,x,x,x,-1,0], [0,0,0,0,0,...,0,x,x,x,-1], [0,0,0,0,0,...,0,0,x,x,x]]).
Using Hadamard's inequality, we obtain t_n^2 <= 3*x^2*(2*x^2 + 1)*(x^2 + 1)*(3*x^2 + 1)^(n-3) for all integers n >= 3 and all real x. (Of course, it is not true for n = 0, 1, 2.)
Guilfoyle's technique can be applied for Werner Schulte's polynomial sequence below, i.e., for p^2*U(n) + p*q*U(n+1) + q^2*U(n+2) - U(n+3) = 0. The first three rows and first three columns of the matrix A_n depend on the initial conditions. We omit the details. (End)

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
  1;
  1,  0;
  1,  1,  0;
  1,  2,  1,  0;
  1,  3,  3,  0,  0;
  1,  4,  6,  2,  0,  0;
  1,  5, 10,  7,  1,  0,  0;
  ...
From _Petros Hadjicostas_, Jun 10 2020: (Start)
The n-th tribonacci polynomial is t_n = Sum_{k=0..n} T(n,k)*x^(n-k), so, for example:
t_4 = x^4 + 3*x^3 + 3*x^2;
t_5 = x^5 + 4*x^4 + 6*x^3 + 2*x^2;
t_6 = x^6 + 5*x^5 + 10*x^4 + 7*x^3 + x^2;
t_7 = x^7 + 6*x^6 + 15*x^5 + 16*x^4 + 6*x^3.
We have
t_4 = det([[x,-1,0,0]; [x,x,-1,0]; [x,x,x,-1]; [0,x,x,x]]);
t_5 = det([[x,-1,0,0,0]; [x,x,-1,0,0]; [x,x,x,-1,0]; [0,x,x,x,-1]; [0,0,x,x,x]]);
t_6 = det([[x,-1,0,0,0,0]; [x,x,-1,0,0,0]; [x,x,x,-1,0,0]; [0,x,x,x,-1,0]; [0,0,x,x,x,-1]; [0,0,0,x,x,x]]);
t_7 = det([[x,-1,0,0,0,0,0]; [x,x,-1,0,0,0,0]; [x,x,x,-1,0,0,0]; [0,x,x,x,-1,0,0]; [0,0,x,x,x,-1,0]; [0,0,0,x,x,x,-1]; [0,0,0,0,x,x,x]]). (End)
		

References

  • Thomas Koshy, Fibonacci and Lucas numbers with Applications, Vol. 2, Wiley, 2019; see p. 33. [He gives Swamy inequalities for the Fibonacci and the Lucas polynomials. Vol. 1 was published in 2001. - Petros Hadjicostas, Jun 10 2020]

Crossrefs

Closely related to A078802. A better version of A082870. Cf. A000073.
Cf. A002426 (central terms).

Programs

  • Haskell
    a082601 n k = a082601_tabl !! n !! k
    a082601_row n = a082601_tabl !! n
    a082601_tabl = [1] : [1,0] : [1,1,0] : f [0,0,1] [0,1,0] [1,1,0]
       where f us vs ws = ys : f (0:vs) (0:ws) ys where
                          ys = zipWith3 (((+) .) . (+)) us vs ws ++ [0]
    -- Reinhard Zumkeller, Apr 13 2014
  • Maple
    G:=x*y/(1-x-x^2*y-x^3*y^2): Gs:=simplify(series(G,x=0,18)): for n from 1 to 16 do P[n]:=sort(coeff(Gs,x^n)) od: seq(seq(coeff(P[i],y^j),j=1..i),i=1..16);
  • Mathematica
    Table[SeriesCoefficient[x/(1 - x - x^2*y - x^3*y^2), {x, 0, n}, {y, 0, k}], {n, 13}, {k, 0, n - 1}] // Flatten (* Michael De Vlieger, Feb 22 2017 *)

Formula

G.f.: x/(1 - x - x^2*y - x^3*y^2). - Vladeta Jovovic, May 30 2003
From Werner Schulte, Feb 22 2017: (Start)
T(n,k) = Sum_{j=0..floor(k/2)} binomial(k-j,j)*binomial(n-k,k-j) for 0 <= k and k <= floor(2*n/3) with binomial(i,j) = 0 for iDennis P. Walsh at A078802).
Based on two integers p and q define the integer sequence U(n) by U(0) = 0 and U(1) = 0 and U(n+2) = Sum_{k=0..floor(2*n/3)} T(n,k)*p^k*q^(2*n-3*k) for n >= 0. That yields the g.f. f(p,q,x) = x^2/(1 - q^2*x - p*q*x^2 - p^2*x^3) and the recurrence U(n+3) = q^2*U(n+2) + p*q*U(n+1) + p^2*U(n) for n >= 0 with initial values U(0) = U(1) = 0 and U(2) = 1. For p = q = +/-1, you'll get tribonacci numbers A000073. For p = -1 and q = 1, you'll get A021913. (End)

Extensions

Edited by Anne Donovan and N. J. A. Sloane, May 27 2003
More terms from Emeric Deutsch, May 06 2004

A168511 Triangle T(n,k), read by rows, given by [0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,...] DELTA [1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 0, 1, 4, 0, 0, 2, 4, 8, 0, 0, 4, 10, 12, 16, 0, 0, 8, 24, 36, 32, 32, 0, 0, 16, 56, 101, 112, 80, 64, 0, 0, 32, 128, 270, 360, 320, 192, 128, 0, 0, 64, 288, 696, 1086, 1160, 864, 448, 256, 0, 0, 128, 640, 1744, 3120, 3900, 3488, 2240, 1024, 512
Offset: 0

Views

Author

Philippe Deléham, Nov 28 2009

Keywords

Examples

			Triangle begins:
  1;
  0, 1;
  0, 0,  2;
  0, 0,  1,  4;
  0, 0,  2,  4,   8;
  0, 0,  4, 10,  12,  16;
  0, 0,  8, 24,  36,  32, 32;
  0, 0, 16, 56, 101, 112, 80, 64;
  ...
		

Crossrefs

Formula

Sum_{k=0..n} T(n,k)*x^(n-k) = A001405(n), A011782(n), A000108(n), A168490(n), A168492(n) for x = -1,0,1,2,3 respectively.

Extensions

Corrected and extended by Philippe Deléham, Mar 20 2013

A083651 Triangular array, read by rows: T(n,k) = k-th bit in binary representation of n (0<=k<=n).

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Reinhard Zumkeller, May 01 2003

Keywords

Comments

n = Sum(T(n,k)*2^k: 0<=k<=n);
T(n, A070939(n))=1 for n>0, T(n,k)=0 for k>A070939(n);
T(n,0)=A000035(n); T(n,n)=0;
A021913(0)=T(0,0), A021913(n)=T(n,1) for n>0.

Examples

			The triangle starts
0
1 0
0 1 0
1 1 0 0
0 0 1 0 0
1 0 1 0 0 0
0 1 1 0 0 0 0
1 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
		

Crossrefs

Cf. A000035 (column k=0), A133872 (k=1), A131078 (k=2), A000120 (row sums).

Programs

  • Maple
    A083651 := proc(n,k)
        floor(n/2^k) ;
        modp(%,2) ;
    end proc:  # R. J. Mathar, Apr 21 2021
  • Mathematica
    row[n_] := row[n] = PadRight[Reverse[IntegerDigits[n, 2]], n+1];
    T[n_, k_] := row[n][[k+1]];
    Table[T[n, k], {n, 0, 14}, {k, 0, n}] // Flatten

A119328 Number triangle T(n,k)=sum{i=0..n, (-1)^(n-i)*C(n,i)*sum{j=0..i-k, C(k,2j)*C(i-k,2j)}}.

Original entry on oeis.org

1, 0, 1, 0, -1, 1, 0, 1, -2, 1, 0, -1, 4, -3, 1, 0, 1, -6, 9, -4, 1, 0, -1, 8, -19, 16, -5, 1, 0, 1, -10, 33, -44, 25, -6, 1, 0, -1, 12, -51, 96, -85, 36, -7, 1, 0, 1, -14, 73, -180, 225, -146, 49, -8, 1, 0, -1, 16, -99, 304, -501, 456, -231, 64, -9, 1
Offset: 0

Views

Author

Paul Barry, May 14 2006

Keywords

Comments

Row sums are A021913(n+2). Product with Pascal's triangle A007318 is A119326.

Examples

			Triangle begins
1,
0, 1,
0, -1, 1,
0, 1, -2, 1,
0, -1, 4, -3, 1,
0, 1, -6, 9, -4, 1,
0, -1, 8, -19, 16, -5, 1,
0, 1, -10, 33, -44, 25, -6, 1,
0, -1, 12, -51, 96, -85, 36, -7, 1,
0, 1, -14, 73, -180, 225, -146, 49, -8, 1,
0, -1, 16, -99, 304, -501, 456, -231, 64, -9, 1
		

Programs

  • Mathematica
    t[n_, k_] := Sum[(-1)^(n - i)*Binomial[n, i]*Sum[Binomial[k, 2 j]*Binomial[i - k, 2 j], {j, 0, i - k}], {i, 0, n}]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 25 2013 *)

Formula

Column k has g.f. (x/(1+x))^k*sum{j=0..k, C(k,2j)x^(2j)}

A192359 Numerator of h(n+6) - h(n), where h(n) = Sum_{k=1..n} 1/k.

Original entry on oeis.org

49, 223, 341, 2509, 2131, 20417, 18107, 30233, 96163, 1959, 36177, 51939, 436511, 598433, 80507, 532541, 1388179, 1785181, 378013, 95003, 1181909, 4370849, 2671363, 3240049, 1560647, 9333997, 5547947, 2185691, 5138581, 1201967, 10493071, 12159157, 28060691, 32250013
Offset: 0

Views

Author

Gary Detlefs, Jun 28 2011

Keywords

Comments

Numerator of (2*n+7)*(3*n^4 + 42*n^3 + 203*n^2 + 392*n + 252)/((n+1)*(n+2)*...*(n+6)).
(2*n+7)*(3*n^4 + 42*n^3 + 203*n^2 + 392*n + 252)/a(n) can be factored into 2^m(n)*3^p(n)*5^(q1(n) + q2(n)) where
m(n) is of period 4, repeating [2,2,3,3]
p(n) is of period 9, repeating [2,2,2,1,1,1,1,1,1]
q1(n) is of period 5, repeating [0,0,0,0,1]
q2(n) is of period 25, repeating [0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0].

Crossrefs

Programs

  • GAP
    List(List([0..35],n->Sum([1..n+6],k->(1/k))-Sum([1..n],k->(1/k))),NumeratorRat); # Muniru A Asiru, Oct 21 2018
  • Magma
    [49] cat [Numerator(HarmonicNumber(n+6) - HarmonicNumber(n)): n in [1..40]]; // G. C. Greubel, Oct 20 2018
    
  • Maple
    h:= n-> sum(1/k,k=1..n):seq(numer(h(n+6)-h(n)), n=0..33);
    P:=(x,y,z,n)-> floor(((n+x)mod y)/z):
    a:=n->(2*n+7)*(3*n^4+42*n^3+203*n^2+392*n+252)/(2^(P(0,4,2,n)+2)*3^(P(6,9,6,n)+1)*5^(P(0,5,4,n)+P(15,25,24,n))):
    seq(a(n), n=0..25);
  • Mathematica
    Numerator[Table[HarmonicNumber[n+6]-HarmonicNumber[n],{n,0,40}]] (* Harvey P. Dale, Mar 27 2015 *)
  • PARI
    h(n) = sum(k=1, n, 1/k);
    a(n) = numerator(h(n+6)-h(n)); \\ Michel Marcus, Apr 15 2017
    

Formula

a(n) = (2*n+7)*(3*n^4 + 42*n^3 + 203*n^2 + 392*n + 252)/(2^(P(0,4,2,n)+2) * 3^(P(6,9,6,n)+1)*5^(P(0,5,4,n)+P(15,25,24,n))), where P(x,y,z,n) = floor(((n+x)mod y)/z).

A350758 Sum of all (j+1)-th products of (n-2j) successive primes for j=0..floor(n/2).

Original entry on oeis.org

1, 2, 7, 33, 226, 2420, 31221, 525917, 9960028, 228028812, 6582873441, 203832844657, 7522104144920, 307994276065974, 13236129969377405, 621482119947376921, 32898794005805573210, 1939157848567313376490, 118255213619653849652599, 7917287291057332412711339
Offset: 0

Views

Author

Alois P. Heinz, Jan 21 2022

Keywords

Examples

			a(0) = 1.
a(1) = 2.
a(2) = 2*3 + 1 = 7.
a(3) = 2*3*5 + 3 = 33.
a(4) = 2*3*5*7 + 3*5 + 1 = 226.
a(5) = 2*3*5*7*11 + 3*5*7 + 5 = 2420.
		

Crossrefs

Antidiagonal sums of A096334.

Programs

  • Maple
    b:= proc(n, k) option remember;
         `if`(n=k, 1, b(n-1, k)*ithprime(n))
        end:
    a:= n-> add(b(n-j, j), j=0..n/2):
    seq(a(n), n=0..20);
  • Mathematica
    b[n_, k_] := b[n, k] = If[n == k, 1, b[n - 1, k]*Prime[n]];
    a[n_] := Sum[b[n - j, j], {j, 0, n/2}];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 08 2022, after Alois P. Heinz *)

Formula

a(n) = Sum_{j=0..floor(n/2)} A096334(n-j,j).
a(n) mod 2 = A021913(n) for n>=1.

A021307 Decimal expansion of 1/303.

Original entry on oeis.org

0, 0, 3, 3, 0, 0, 3, 3, 0, 0, 3, 3, 0, 0, 3, 3, 0, 0, 3, 3, 0, 0, 3, 3, 0, 0, 3, 3, 0, 0, 3, 3, 0, 0, 3, 3, 0, 0, 3, 3, 0, 0, 3, 3, 0, 0, 3, 3, 0, 0, 3, 3, 0, 0, 3, 3, 0, 0, 3, 3, 0, 0, 3, 3, 0, 0, 3, 3, 0, 0, 3, 3, 0, 0, 3, 3, 0, 0, 3, 3, 0, 0, 3, 3, 0, 0, 3, 3, 0, 0, 3, 3, 0, 0, 3, 3, 0, 0, 3
Offset: 0

Views

Author

Keywords

Examples

			0.003300330033003300330033...
		

Crossrefs

Cf. A021913.

Programs

  • Mathematica
    Join[{0,0},RealDigits[1/303,10,120][[1]]] (* or *) PadRight[{},120,{0,0,3,3}] (* Harvey P. Dale, May 29 2017 *)

Formula

From Chai Wah Wu, Apr 18 2024: (Start)
a(n) = a(n-1) - a(n-2) + a(n-3) for n > 2.
G.f.: -3*x^2/((x - 1)*(x^2 + 1)). (End)
Equals 3*A021913. - Hugo Pfoertner, Apr 18 2024

A131360 a(4n) = a(4n+1) = 0, a(4n+2) = 2n, a(4n+3) = 2n+1.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 2, 3, 0, 0, 4, 5, 0, 0, 6, 7, 0, 0, 8, 9, 0, 0, 10, 11, 0, 0, 12, 13, 0, 0, 14, 15, 0, 0, 16, 17, 0, 0, 18, 19, 0, 0, 20, 21, 0, 0, 22, 23, 0, 0, 24, 25, 0, 0, 26, 27, 0, 0, 28, 29, 0, 0, 30, 31, 0, 0, 32, 33, 0, 0, 34, 35, 0, 0, 36, 37, 0, 0, 38, 39, 0, 0, 40, 41, 0, 0, 42, 43
Offset: 0

Views

Author

Paul Curtz, Sep 30 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Array[Floor[(# - 1)/2] Floor[Mod[#, 4]/2] &, 88, 0] (* Michael De Vlieger, Sep 22 2021 *)
  • PARI
    concat(vector(3), Vec(x^3*(x^3+x^2-x+1)/((x-1)^2*(x+1)*(x^2+1)^2) + O(x^100))) \\ Colin Barker, Jul 01 2015

Formula

G.f.: x^3*(x^3+x^2-x+1) / ((x-1)^2*(x+1)*(x^2+1)^2). - Colin Barker, Jul 01 2015
a(n) = (cos(n*Pi/2)+sin(n*Pi/2)-1)*((2n-3)*cos(n*Pi/2)+cos(n*Pi)+(2n-3)*sin(n*Pi/2))/8. - Wesley Ivan Hurt, Sep 24 2017
a(n) = floor((n-1)/2)*A021913(n). - Lechoslaw Ratajczak, Sep 22 2021

A169676 Lexicographically earliest de Bruijn sequence for n = 2 and k = 3.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 1, 2, 2, 0, 0, 1, 0, 2, 1, 1, 2, 2, 0, 0, 1, 0, 2, 1, 1, 2, 2, 0, 0, 1, 0, 2, 1, 1, 2, 2, 0, 0, 1, 0, 2, 1, 1, 2, 2, 0, 0, 1, 0, 2, 1, 1, 2, 2, 0, 0, 1, 0, 2, 1, 1, 2, 2, 0, 0, 1, 0, 2, 1, 1, 2, 2, 0, 0, 1, 0, 2, 1, 1, 2, 2, 0, 0, 1, 0, 2, 1, 1, 2, 2, 0, 0, 1, 0, 2, 1, 1, 2, 2
Offset: 0

Views

Author

N. J. A. Sloane, Apr 11 2010

Keywords

Examples

			Periodic with period 9, the period being 001021122.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 1},{0, 0, 1, 0, 2, 1, 1, 2, 2},99] (* Ray Chandler, Aug 26 2015 *)

Extensions

If someone would like to help, I would like to get analogous entries for k = 3 and n = 3,4,5,6; k = 4 and n = 2,3,4,5,6; k = 5 and n = 2,3,4,5,6; and n = 2 and k = 6,7,8,9, ...

A189046 a(n) = lcm(n,n+1,n+2,n+3,n+4,n+5)/60.

Original entry on oeis.org

0, 1, 7, 14, 42, 42, 462, 462, 858, 3003, 1001, 4004, 6188, 18564, 27132, 3876, 27132, 74613, 100947, 67298, 17710, 230230, 296010, 188370, 237510, 118755, 736281, 453096, 553784, 1344904, 324632
Offset: 0

Views

Author

Gary Detlefs, Apr 15 2011

Keywords

Comments

a(n) mod 2 has a period of 8, repeating [0,1,1,0,0,0,0,0].

Crossrefs

Cf. A000217 ( = lcm(n,n+1)/2), A021913, A067046, A067047, A067048.

Programs

  • Maple
    seq(lcm(n,n+1,n+2,n+3,n+4,n+5)/60,n=0..30)
  • Mathematica
    Table[(LCM@@(n+Range[0,5]))/60,{n,0,40}]  (* Harvey P. Dale, Apr 17 2011 *)
  • PARI
    a(n)=lcm([n..n+5])/60 \\ Charles R Greathouse IV, Sep 30 2016

Formula

a(n) = n*(n+1)*(n+2)*(n+3)*(n+4)*(n+5)*(4*(n^4 mod 5)+1)/(1800*((n^3 mod 4)+((n-1)^3 mod 4)+1)).
a(n) = binomial(n+5,6)/(gcd(n,5)*(A021913(n-1)+1)).
a(n) = binomial(n+5,6)/(gcd(n,5)*floor(((n-1) mod 4)/2+1)). - Gary Detlefs, Apr 22 2011
Sum_{n>=1} 1/a(n) = 92 + (54/5-18*sqrt(5)+6*sqrt(178-398/sqrt(5)))*Pi. - Amiram Eldar, Sep 29 2022
Previous Showing 21-30 of 32 results. Next