cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 38 results. Next

A298028 Coordination sequence of Dual(3.6.3.6) tiling with respect to a trivalent node.

Original entry on oeis.org

1, 3, 12, 9, 24, 15, 36, 21, 48, 27, 60, 33, 72, 39, 84, 45, 96, 51, 108, 57, 120, 63, 132, 69, 144, 75, 156, 81, 168, 87, 180, 93, 192, 99, 204, 105, 216, 111, 228, 117, 240, 123, 252, 129, 264, 135, 276, 141, 288, 147, 300, 153, 312, 159, 324, 165, 336, 171, 348, 177, 360, 183, 372, 189, 384, 195
Offset: 0

Views

Author

N. J. A. Sloane, Jan 21 2018

Keywords

Comments

Also known as the kgd net.
This is one of the Laves tilings.

Crossrefs

Cf. A008579, A135556 (partial sums), A298026 (trivalent point).
If the initial 1 is changed to 0 we get A165988 (but we need both sequences, just as we have both A008574 and A008586).
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.

Programs

  • Maple
    f3:=proc(n) if n=0 then 1 elif (n mod 2) = 0 then 6*n else 3*n; fi; end;
    [seq(f3(n),n=0..80)];
  • Mathematica
    Join[{1}, LinearRecurrence[{0, 2, 0, -1}, {3, 12, 9, 24}, 80]] (* Jean-François Alcover, Mar 23 2020 *)

Formula

a(0)=1; a(2*k) = 12*k, a(2*k+1) = 6*k+3.
G.f.: 1 + 3*x*(x^2+4*x+1)/(1-x^2)^2. - Robert Israel, Jan 21 2018
a(n) = 3*A022998(n), n>0. - R. J. Mathar, Jan 29 2018

A298029 Coordination sequence of Dual(3.4.6.4) tiling with respect to a trivalent node.

Original entry on oeis.org

1, 3, 6, 12, 18, 33, 39, 51, 57, 69, 75, 87, 93, 105, 111, 123, 129, 141, 147, 159, 165, 177, 183, 195, 201, 213, 219, 231, 237, 249, 255, 267, 273, 285, 291, 303, 309, 321, 327, 339, 345, 357, 363, 375, 381, 393, 399, 411, 417, 429, 435, 447, 453, 465, 471, 483, 489, 501, 507, 519, 525, 537, 543, 555
Offset: 0

Views

Author

N. J. A. Sloane, Jan 21 2018

Keywords

Comments

Also known as the deltoidal trihexagonal tiling, or the mta net.
In the Ferreol link this is described as the dual to the Diana tiling. - N. J. A. Sloane, May 24 2020
This is one of the Laves tilings.

Crossrefs

Cf. A007310, A008574, A298030 (partial sums), A298031 (for a tetravalent node), A298033 (hexavalent node), A306771.
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.

Programs

  • Mathematica
    Join[{1, 3, 6, 12, 18}, LinearRecurrence[{1, 1, -1}, {33, 39, 51}, 60]] (* Jean-François Alcover, Jan 07 2019 *)
    Join[{1,3,6,12,18},Table[If[EvenQ[n],9n-15,9n-12],{n,5,70}]] (* Harvey P. Dale, Aug 25 2019 *)
  • PARI
    Vec((1 + 2*x + 2*x^2 + 4*x^3 + 3*x^4 + 9*x^5 - 3*x^7) / ((1 - x)^2*(1 + x)) + O(x^60)) \\ Colin Barker, Jan 25 2018

Formula

Theorem: For n >= 5, if n is even then a(n) = 9*n-15, otherwise a(n) = 9*n-12. The proof uses the "coloring book" method described in the Goodman-Strauss & Sloane article. - N. J. A. Sloane, Jan 24 2018
G.f.: -(3*x^7 - 9*x^5 - 3*x^4 - 4*x^3 - 2*x^2 - 2*x - 1)/((1 - x)*(1 - x^2)).
a(n) = a(n-1) + a(n-2) - a(n-3) for n>7. - Colin Barker, Jan 25 2018
a(n) = (3/2)*(6*n - (-1)^n - 9) for n>4. - Bruno Berselli, Jan 25 2018
a(n) = 3*A007310(n-1), n>4. - R. J. Mathar, Jan 29 2018

A298031 Coordination sequence of Dual(3.4.6.4) tiling with respect to a tetravalent node.

Original entry on oeis.org

1, 4, 10, 16, 30, 36, 48, 54, 66, 72, 84, 90, 102, 108, 120, 126, 138, 144, 156, 162, 174, 180, 192, 198, 210, 216, 228, 234, 246, 252, 264, 270, 282, 288, 300, 306, 318, 324, 336, 342, 354, 360, 372, 378, 390, 396, 408, 414, 426, 432, 444, 450, 462, 468, 480, 486, 498, 504, 516, 522, 534, 540
Offset: 0

Views

Author

N. J. A. Sloane, Jan 21 2018; extended with formula, Jan 24 2018

Keywords

Comments

Also known as the mta net.
This is one of the Laves tilings.
In the Ferreol link this is described as the dual to the Diana tiling. - N. J. A. Sloane, May 24 2020

Crossrefs

Cf. A008574, A298032 (partial sums), A298029 (for a trivalent node), A298033 (hexavalent node).
List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.

Programs

  • Maple
    f4:=proc(n) local L; L:=[1,4,10,16];
    if n<4 then L[n+1] elif (n mod 2) = 0 then 9*n-6 else 9*n-9; fi;
    end;
    [seq(f4(n),n=0..80)];
  • Mathematica
    Join[{1, 4, 10, 16}, LinearRecurrence[{1, 1, -1}, {30, 36, 48}, 62]] (* Jean-François Alcover, Apr 23 2018 *)
  • PARI
    Vec((1 + 3*x + 5*x^2 + 3*x^3 + 8*x^4 - 2*x^6) / ((1 - x)^2*(1 + x)) + O(x^60)) \\ Colin Barker, Jan 25 2018

Formula

Theorem: For n >= 4, a(n) = 9*n-6 if n is even, otherwise a(n) = 9*n-9.
The proof uses the "coloring book" method described in the Goodman-Strauss & Sloane article. The subgraph H is shown above in the links.
G.f.: -(2*x^6 - 8*x^4 - 3*x^3 - 5*x^2 - 3*x - 1) / ((1 - x)*(1 - x^2)).
a(n) = a(n-1) + a(n-2) - a(n-3) for n>4. - Colin Barker, Jan 25 2018
a(n) = 6*A007494(n-1), n>3. - R. J. Mathar, Jan 29 2018

A298033 Coordination sequence of the Dual(3.4.6.4) tiling with respect to a hexavalent node.

Original entry on oeis.org

1, 6, 12, 24, 30, 42, 48, 60, 66, 78, 84, 96, 102, 114, 120, 132, 138, 150, 156, 168, 174, 186, 192, 204, 210, 222, 228, 240, 246, 258, 264, 276, 282, 294, 300, 312, 318, 330, 336, 348, 354, 366, 372, 384, 390, 402, 408, 420, 426, 438, 444, 456, 462, 474, 480, 492, 498, 510, 516, 528, 534, 546, 552
Offset: 0

Views

Author

N. J. A. Sloane, Jan 21 2018, corrected Jan 24 2018

Keywords

Comments

Also known as the mta net.
This is one of the Laves tilings.

Crossrefs

List of coordination sequences for Laves tilings (or duals of uniform planar nets): [3,3,3,3,3.3] = A008486; [3.3.3.3.6] = A298014, A298015, A298016; [3.3.3.4.4] = A298022, A298024; [3.3.4.3.4] = A008574, A296368; [3.6.3.6] = A298026, A298028; [3.4.6.4] = A298029, A298031, A298033; [3.12.12] = A019557, A298035; [4.4.4.4] = A008574; [4.6.12] = A298036, A298038, A298040; [4.8.8] = A022144, A234275; [6.6.6] = A008458.
Cf. A008574, A038764 (partial sums), A298029 (coordination sequence for a trivalent node), A298031 (coordination sequence for a tetravalent node).

Programs

  • Maple
    f6:=proc(n) if n=0 then 1 elif (n mod 2) = 0 then 9*n-6 else 9*n-3; fi; end;
    [seq(f6(n),n=0..80)];
  • Mathematica
    Join[{1}, LinearRecurrence[{1, 1, -1}, {6, 12, 24}, 62]] (* Jean-François Alcover, Apr 23 2018 *)
  • PARI
    Vec((1 + 5*x + 5*x^2 + 7*x^3) / ((1 - x)^2*(1 + x)) + O(x^60)) \\ Colin Barker, Jan 25 2018
    
  • PARI
    apply( {A298033(n)=if(n,n*3\/2*6-6,1)}, [0..66]) \\ M. F. Hasler, Jan 11 2022

Formula

Theorem: For n>0, a(n) = 9*n-6 if n is even, a(n) = 9*n-3 if n is odd.
The proof uses the "coloring book" method described in the Goodman-Strauss & Sloane article. The subgraph H is shown above in the links.
G.f.: (1 + 5*x + 5*x^2 + 7*x^3) / ((1 - x)*(1 - x^2)).
First differences are 1, 5, 6, 12, 6, 12, 6, 12, 6, 12, 6, 12, ...
a(n) = a(n-1) + a(n-2) - a(n-3) for n>3. - Colin Barker, Jan 25 2018
a(n) = 6*floor((3n-1)/2) for n > 0. - M. F. Hasler, Jan 11 2022

A017569 a(n) = 12*n + 4.

Original entry on oeis.org

4, 16, 28, 40, 52, 64, 76, 88, 100, 112, 124, 136, 148, 160, 172, 184, 196, 208, 220, 232, 244, 256, 268, 280, 292, 304, 316, 328, 340, 352, 364, 376, 388, 400, 412, 424, 436, 448, 460, 472, 484, 496, 508, 520, 532, 544, 556, 568, 580, 592, 604, 616, 628
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0(46).
Number of 6 X n 0-1 matrices avoiding simultaneously the right angled numbered polyomino patterns (ranpp) (00;1), (01;0), (11;0) and (01;1). An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1A008574; m=3: A016933; m=4: A022144; m=5: A017293. - Sergey Kitaev, Nov 13 2004
Except for 4, exponents e such that x^e - x^2 + 1 is reducible.
If Y and Z are 2-blocks of a (3n+1)-set X then a(n-1) is the number of 3-subsets of X intersecting both Y and Z. - Milan Janjic, Oct 28 2007
Terms are perfect squares iff n is a generalized octagonal number (A001082), then n = k*(3*k-2) and a(n) = (2*(3*k-1))^2. - Bernard Schott, Feb 26 2023

Crossrefs

Programs

Formula

A089911(a(n)) = 3. - Reinhard Zumkeller, Jul 05 2013
Sum_{n>=0} (-1)^n/a(n) = sqrt(3)*Pi/36 + log(2)/12. - Amiram Eldar, Dec 12 2021
From Stefano Spezia, Feb 25 2023: (Start)
O.g.f.: 4*(1 + 2*x)/(1 - x)^2.
E.g.f.: 4*exp(x)*(1 + 3*x). (End)
From Elmo R. Oliveira, Apr 10 2025: (Start)
a(n) = 2*a(n-1) - a(n-2).
a(n) = 2*A016933(n) = 4*A016777(n) = A016777(4*n+1). (End)

A010006 Coordination sequence for C_3 lattice: a(n) = 16*n^2 + 2 (n>0), a(0)=1.

Original entry on oeis.org

1, 18, 66, 146, 258, 402, 578, 786, 1026, 1298, 1602, 1938, 2306, 2706, 3138, 3602, 4098, 4626, 5186, 5778, 6402, 7058, 7746, 8466, 9218, 10002, 10818, 11666, 12546, 13458, 14402, 15378, 16386, 17426, 18498, 19602, 20738, 21906, 23106, 24338, 25602, 26898
Offset: 0

Views

Author

N. J. A. Sloane, mbaake(AT)sunelc3.tphys.physik.uni-tuebingen.de (Michael Baake)

Keywords

Comments

If Y_i (i=1,2,3) are 2-blocks of a (2n+1)-set X then a(n-1) is the number of 5-subsets of X intersecting each Y_i (i=1,2,3). - Milan Janjic, Oct 28 2007
Also sequence found by reading the segment (1, 18) together with the line from 18, in the direction 18, 66, ..., in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Nov 02 2012

Crossrefs

Cf. A206399. For the coordination sequences of other C_n lattices see A022144 (C_2), A010006 (C_3), A019560 - A019564 (C_4 through C_8), A035746 - A035787 (C_9 through C_50). Cf. A137513.

Programs

Formula

a(0)=1, a(n) = 16*n^2 + 2, n >= 1.
G.f.: (1+x)*(1+14*x+x^2)/(1-x)^3.
G.f. for coordination sequence of C_n lattice: (1/(1-z)^n)*Sum_{i=0..n} binomial(2*n, 2*i)*z^i.
E.g.f.: (x*(x+1)*16+2)*e^x - 1. - Gopinath A. R., Feb 14 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=18, a(2)=66, a(3)=146. - Harvey P. Dale, Oct 15 2012
G.f. for sequence with interpolated zeros: cosh(6*arctanh(x)) = (1/2)*( ((1 - x)/(1 + x))^3 + ((1 + x)/(1 - x))^3) = 1 + 18*x^2 + 66*x^4 + 146*x^6 + .... More generally, cosh(2*n*arctanh(sqrt(x))) is the o.g.f. for the coordination sequence of the C_n lattice. Note that exp(t*arctanh(x)) is the e.g.f. for the Mittag_Leffler polynomials. See A137513. - Peter Bala, Apr 09 2017
Sum_{n>=0} 1/a(n) = 3/4 + sqrt(2)/16*Pi*coth( Pi*sqrt(2)/4) = 1.095237238050... - R. J. Mathar, May 07 2024
a(n) = 2*A081585(n), n>0. - R. J. Mathar, May 07 2024
a(n) = A069129(n)+A069129(n+1). - R. J. Mathar, May 07 2024

A103884 Square array A(n,k) read by antidiagonals: row n gives coordination sequence for lattice C_n.

Original entry on oeis.org

1, 1, 8, 1, 18, 16, 1, 32, 66, 24, 1, 50, 192, 146, 32, 1, 72, 450, 608, 258, 40, 1, 98, 912, 1970, 1408, 402, 48, 1, 128, 1666, 5336, 5890, 2720, 578, 56, 1, 162, 2816, 12642, 20256, 14002, 4672, 786, 64, 1, 200, 4482, 27008, 59906, 58728, 28610, 7392, 1026, 72
Offset: 2

Views

Author

Ralf Stephan, Feb 20 2005

Keywords

Examples

			Array begins:
  1,   8,    16,     24,      32,       40,        48, ... A022144;
  1,  18,    66,    146,     258,      402,       578, ... A010006;
  1,  32,   192,    608,    1408,     2720,      4672, ... A019560;
  1,  50,   450,   1970,    5890,    14002,     28610, ... A019561;
  1,  72,   912,   5336,   20256,    58728,    142000, ... A019562;
  1,  98,  1666,  12642,   59906,   209762,    596610, ... A019563;
  1, 128,  2816,  27008,  157184,   658048,   2187520, ... A019564;
  1, 162,  4482,  53154,  374274,  1854882,   7159170, ... A035746;
  1, 200,  6800,  97880,  822560,  4780008,  21278640, ... A035747;
  1, 242,  9922, 170610, 1690370, 11414898,  58227906, ... A035748;
  1, 288, 14016, 284000, 3281280, 25534368, 148321344, ... A035749;
  ...
Antidiagonals, T(n, k), begins as:
  1;
  1,   8;
  1,  18,   16;
  1,  32,   66,   24;
  1,  50,  192,  146,   32;
  1,  72,  450,  608,  258,   40;
  1,  98,  912, 1970, 1408,  402,  48;
  1, 128, 1666, 5336, 5890, 2720, 578, 56;
		

Crossrefs

Programs

  • Magma
    A103884:= func< n,k | k eq 0 select 1 else 2*(&+[2^j*Binomial(n-k,j+1)*Binomial(2*k-1,j) : j in [0..2*k-1]]) >;
    [A103884(n,k): k in [0..n-2], n in [2..12]]; // G. C. Greubel, May 23 2023
    
  • Mathematica
    nmin = 2; nmax = 11; t[n_, 0]= 1; t[n_, k_]:= 2n*Hypergeometric2F1[1-2k, 1-n, 2, 2]; tnk= Table[ t[n, k], {n, nmin, nmax}, {k, 0, nmax-nmin}]; Flatten[ Table[ tnk[[ n-k+1, k ]], {n, 1, nmax-nmin+1}, {k, 1, n} ] ] (* Jean-François Alcover, Jan 24 2012, after formula *)
  • SageMath
    def A103884(n,k): return 1 if k==0 else 2*sum(2^j*binomial(n-k,j+1)*binomial(2*k-1,j) for j in range(2*k))
    flatten([[A103884(n,k) for k in range(n-1)] for n in range(2,13)]) # G. C. Greubel, May 23 2023

Formula

A(n,k) = Sum_{i=1..2*k} 2^i*C(n, i)*C(2*k-1, i-1), A(n,0) = 1 (array).
G.f. of n-th row: (Sum_{i=0..n} C(2*n, 2*i)*x^i)/(1-x)^n.
T(n, k) = A(n-k, k) (antidiagonals).
T(n, n-2) = A022144(n-2).
T(n, k) = 2*(n-k)*Hypergeometric2F1([1+k-n, 1-2*k], [2], 2), T(n, 0) = 1, for n >= 2, 0 <= k <= n-2. - G. C. Greubel, May 23 2023
From Peter Bala, Jul 09 2023: (Start)
T(n,k) = [x^k] Chebyshev_T(n, (1 + x)/(1 - x)), where Chebyshev_T(n, x) denotes the n-th Chebyshev polynomial of the first kind.
T(n+1,k) = T(n+1,k-1) + 2*T(n,k) + 2*T(n,k-1) + T(n-1,k) - T(n-1,k-1). (End)

Extensions

Definition clarified by N. J. A. Sloane, May 25 2023

A019560 Coordination sequence for C_4 lattice.

Original entry on oeis.org

1, 32, 192, 608, 1408, 2720, 4672, 7392, 11008, 15648, 21440, 28512, 36992, 47008, 58688, 72160, 87552, 104992, 124608, 146528, 170880, 197792, 227392, 259808, 295168, 333600, 375232, 420192, 468608
Offset: 0

Views

Author

mbaake(AT)sunelc3.tphys.physik.uni-tuebingen.de (Michael Baake)

Keywords

Crossrefs

Cf. A103884 (row 4). For coordination sequences of other C_n lattices see A022144 (C_2), A010006 (C3), A019560 - A019564 (C_4 through C_8), A035746 - A035787 (C_9 through C_50).

Programs

  • Magma
    [1] cat [(32/3)*n*(1 + 2*n^2): n in [1..40]]; // Vincenzo Librandi, Apr 10 2017
  • Mathematica
    Join[{1}, Table[(32/3) n (1 + 2 n^2), {n, 30}]] (* Vincenzo Librandi, Apr 10 2017 *)

Formula

a(n) = (32/3)*n*(1 + 2*n^2) for n>0.
G.f.: (1 + 28*x + 70*x^2 + 28*x^3 + x^4)/(1 - x)^4.
G.f. for sequence with interpolated zeros: cosh(8*arctanh(x)) = 1/2*(((1 + x)/(1 - x))^4 + ((1 - x)/(1 + x))^4) = 1 + 32*x^2 + 192*x^4 + 608*x^6 + .... Cf. A057813. - Peter Bala, Apr 09 2017
a(n) = A008412(2*n). - Seiichi Manyama, Jun 08 2018

A110907 Number of points in the standard root system version of the D_3 (or f.c.c.) lattice having L_infinity norm n.

Original entry on oeis.org

1, 12, 50, 108, 194, 300, 434, 588, 770, 972, 1202, 1452, 1730, 2028, 2354, 2700, 3074, 3468, 3890, 4332, 4802, 5292, 5810, 6348, 6914, 7500, 8114, 8748, 9410, 10092, 10802, 11532, 12290, 13068, 13874, 14700, 15554, 16428, 17330, 18252, 19202
Offset: 0

Views

Author

N. J. A. Sloane, Apr 15 2008

Keywords

Comments

This lattice consists of all points (x,y,z) where x,y,z are integers with an even sum.
The L_infinity norm of a vector is the largest component in absolute value.
The sequence for the D_k lattice has the terms ((2*n+1)^k-(2*n-1)^k)/2, if k is even, and the terms ((2n+1)^k-(2*n-1)^k)/2+(-1)^n if k is odd (like here for k=3). The sequence for A_2 is A008458, for A_3 A010006, for A_4 the first differences of A083669. A_5 is 2+2*n^2*(25+44*n^2) if n>0, and 1 if n=0. - R. J. Mathar, Feb 09 2010

Examples

			a(0) = 1: 000
a(1) = 12: +-1 +-1 0, where the 0 can be in any of the three coordinates
a(2) = 50: +-2 0 0 (6), +-2 +-1 +-1 (24), +-2 +-2 0 (12), +-2 +-2 +-2 (8).
		

References

  • J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, Chap. 4.

Crossrefs

Cf. A117216, A022144, A010014, A175112 (D_5), A175114 (D_6).

Programs

  • Maple
    A110907 := proc(n) a :=0 ; for x from -n to n do for y from -n to n do for z from -n to n do if type(x+y+z,'even') then m := max( abs(x),abs(y),abs(z)) ; if m = n then a := a+1 ; end if; end if; end do ; end do ; end do ; a ; end proc: seq(A110907(n),n=0..40) ; # R. J. Mathar, Feb 03 2010
  • Mathematica
    a[0] = 1; a[n_] := 1 + (-1)^n + 12*n^2;
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Nov 16 2017, after R. J. Mathar *)

Formula

From R. J. Mathar, Feb 03 2010: (Start)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4), n>4.
a(n) = 1 + (-1)^n + 12*n^2, n>0.
G.f.: 1 - 2*x*(6 + 13*x + 4*x^2 + x^3)/((1+x)*(x-1)^3). (End)

Extensions

I would like to get analogous sequences for A_2, A_4, A_5, ..., D_4 (see A117216), D_5, ..., E_6, E_7, E_8.
Extended by R. J. Mathar, Feb 03 2010
Removed the "conjectured" attribute from formulas - R. J. Mathar, Feb 27 2010

A317297 a(n) = (n - 1)*(4*n^2 - 8*n + 5).

Original entry on oeis.org

0, 5, 34, 111, 260, 505, 870, 1379, 2056, 2925, 4010, 5335, 6924, 8801, 10990, 13515, 16400, 19669, 23346, 27455, 32020, 37065, 42614, 48691, 55320, 62525, 70330, 78759, 87836, 97585, 108030, 119195, 131104, 143781, 157250, 171535, 186660, 202649, 219526, 237315, 256040, 275725, 296394, 318071
Offset: 1

Views

Author

Omar E. Pol, Sep 01 2018

Keywords

Comments

Conjecture: For n > 1, a(n) is the maximum eigenvalue of a 2*(n-1) X 2*(n-1) square matrix M defined as M[i,j,n] = j + n*(i-1) if i is odd and M[i,j,n] = n*i - j + 1 if i is even (see A317614). - Stefano Spezia, Dec 27 2018
Connections can be made to A022144 and A010014. Namely, a formula for A022144 is (2*n+1)^2 - (2*n-1)^2. A formula for A010014 is (2*n+1)^3 - (2*n-1)^3. The general form can be represented by (2*n+1)^d - (2*n-1)^d, where d designates the number of dimensions. When d is 4, a(n) = ((2*(n-1)+1)^4 - (2*(n-1)-1)^4)/16, namely the general form shifted by 1 and divided by 16 is a(n). - Yigit Oktar, Aug 16 2024

Crossrefs

First bisection of A006003.
Nonzero terms give the row sums of A007607.
Conjecture: 0 together with a bisection of A246697.
Cf. A219086 (partial sums).
Cf. A010014, A022144 (see comments)

Programs

  • Mathematica
    Table[(n - 1) (4 n^2 - 8 n + 5), {n, 1, 50}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 5, 34, 111}, 50] (* or *) CoefficientList[Series[x (5 + 14 x + 5 x^2)/(1 - x)^4, {x, 0, 50}], x] (* Stefano Spezia, Sep 01 2018 *)
  • PARI
    a(n) = (n - 1)*(4*n^2 - 8*n + 5)
    
  • PARI
    concat(0, Vec(x^2*(5 + 14*x + 5*x^2)/(1 - x)^4 + O(x^50))) \\ Colin Barker, Sep 01 2018

Formula

a(n) = 4*n^3 - 12*n^2 + 13*n - 5 = A033430(n) - A135453(n) + A008595(n) - 5.
G.f.: x^2*(5 + 14*x + 5*x^2)/(1 - x)^4. - Colin Barker, Sep 01 2018
a(n) = 4*a(n - 1) - 6*a(n - 2) + 4*a(n - 3) - a(n - 4) for n > 4. - Stefano Spezia, Sep 01 2018
E.g.f.: exp(x)*(5*x + 12*x^2 + 4*x^3). - Stefano Spezia, Jan 15 2019
a(n) = ((2*(n-1)+1)^4 - (2*(n-1)-1)^4)/16. - Yigit Oktar, Aug 16 2024
Previous Showing 21-30 of 38 results. Next