cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 75 results. Next

A266891 Expansion of Product_{k>=1} (1 + k*x^k)^k.

Original entry on oeis.org

1, 1, 4, 13, 29, 81, 188, 456, 1030, 2405, 5295, 11611, 25246, 53552, 113332, 235685, 486011, 990840, 2006567, 4018010, 7992003, 15768511, 30875424, 60060509, 116042548, 222817961, 425200270, 806991037, 1522748592, 2858792520, 5339457208, 9924370365
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 05 2016

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -n, g(n) = -n. - Seiichi Manyama, Nov 18 2017

Crossrefs

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[Product[(1+k*x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]
    (* More efficient program: *) nmax = 50; s = 1+x; Do[s*=Sum[Binomial[k, j] * k^j * x^(j*k), {j, 0, nmax/k}]; s = Take[Expand[s], Min[nmax + 1, Exponent[s, x] + 1]];, {k, 2, nmax}]; CoefficientList[s, x] (* Vaclav Kotesovec, Jan 07 2016 *)

Formula

a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} b(k)*a(n-k) where b(n) = Sum_{d|n} d*(-d)^(1+n/d). - Seiichi Manyama, Nov 18 2017
Conjecture: log(a(n)) ~ n^(2/3) * (2*log(3*n) - 3) / (4*3^(1/3)). - Vaclav Kotesovec, May 08 2018

A067553 Sum of products of terms in all partitions of n into odd parts.

Original entry on oeis.org

1, 1, 1, 4, 4, 9, 18, 25, 40, 76, 122, 178, 321, 472, 734, 1303, 1874, 2852, 4782, 6984, 10808, 17552, 25461, 38512, 61586, 90894, 135437, 213260, 312180, 463340, 728806, 1057468, 1562810, 2422394, 3511962, 5215671, 7985196, 11550542, 17022228, 25924746, 37638033
Offset: 0

Views

Author

Naohiro Nomoto, Jan 29 2002

Keywords

Comments

a(0) = 1 as the empty product equals 1. [Joerg Arndt, Oct 06 2012]

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1) +`if`(i>n or irem(i, 2)=0, 0, i*b(n-i, i))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Sep 07 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n || Mod[i, 2] == 0, 0, i*b[n-i, i]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Apr 02 2015, after Alois P. Heinz *)
    nmax = 40; CoefficientList[Series[Product[1/(1-(2*k-1)*x^(2*k-1)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 15 2015 *)
  • Maxima
    g(n):= if n=0 then 1 else if oddp(n)=true  then n else 0;
    P(m,n):=if n=m then g(n) else sum(g(k)*P(k,n-k),k,m,n/2)+g(n);
    a(n):=P(1,n);
    makelist(a(n),n,0,27); /* Vladimir Kruchinin, Sep 06 2014 */
  • PARI
    N=66; q='q+O('q^N);
    gf= 1/ prod(n=1,N, (1-(2*n-1)*q^(2*n-1)) );
    Vec(gf)
    /* Joerg Arndt, Oct 06 2012 */
    

Formula

G.f.: 1/(Product_{k>=0} (1-(2*k+1)*x^(2*k+1)) ). - Vladeta Jovovic, May 09 2003
From Vaclav Kotesovec, Dec 15 2015: (Start)
a(n) ~ c * 3^(n/3), where
c = 28.8343667894061364904068323836801301428320806272385991... if mod(n,3) = 0
c = 28.4762018725001067057188975211539643762050439184376103... if mod(n,3) = 1
c = 28.3618072960214990676207117911869616961300790076910101... if mod(n,3) = 2.
(End)

Extensions

Corrected a(0) from 0 to 1, Joerg Arndt, Oct 06 2012

A291698 a(n) = [x^n] Product_{k>=1} (1 + n*x^k).

Original entry on oeis.org

1, 1, 2, 12, 20, 55, 294, 497, 1224, 2520, 14410, 21912, 54300, 104286, 220710, 1105215, 1697552, 3839382, 7356762, 14873580, 26275620, 132112596, 188666126, 423247104, 772560600, 1535398150, 2632049290, 4975242048, 21273166572, 30649985160, 64824339630, 116604788800, 223181224992
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 30 2017

Keywords

Comments

The number of partitions of n into distinct parts where each part can be colored in n different ways. For example, there are 4 partitions of 6 into distinct parts, namely 6, 5 + 1, 4 + 2 and 3 + 2 + 1; allowing for the colorings gives a(6) = 6 + 6*6 + 6*6 + 6*6*6 = 294. - Peter Bala, Aug 31 2017

Crossrefs

Main diagonal of A286957.

Programs

  • Maple
    seq(coeff(mul(1+n*x^k,k=1..n),x,n),n=0..50); # Robert Israel, Aug 30 2017
  • Mathematica
    Table[SeriesCoefficient[Product[1 + n x^k, {k, 1, n}], {x, 0, n}], {n, 0, 32}]
    Table[SeriesCoefficient[QPochhammer[-n, x]/(1 + n), {x, 0, n}], {n, 0, 32}]

Formula

a(n) = A286957(n,n).
a(n) == 0 (mod n); a(n) == n (mod n^2). - Peter Bala, Aug 31 2017
Conjecture: a(n) ~ exp(sqrt(2*(log(n)^2 + Pi^2/3)*n)) * (log(n)^2 + Pi^2/3)^(1/4) / (sqrt(Pi) * (2*n)^(5/4)). - Vaclav Kotesovec, Sep 15 2017

A092484 Expansion of Product_{m>=1} (1 + m^2*q^m).

Original entry on oeis.org

1, 1, 4, 13, 25, 77, 161, 393, 726, 2010, 3850, 7874, 16791, 31627, 69695, 139560, 255997, 482277, 986021, 1716430, 3544299, 6507128, 11887340, 21137849, 38636535, 70598032, 123697772, 233003286, 412142276, 711896765, 1252360770
Offset: 0

Views

Author

Jon Perry, Apr 04 2004

Keywords

Comments

Sum of squares of products of terms in all partitions of n into distinct parts.

Examples

			The partitions of 6 into distinct parts are 6, 1+5, 2+4, 1+2+3, the corresponding squares of products are 36, 25, 64, 36 and their sum is a(6) = 161.
		

Crossrefs

Column k=2 of A292189.

Programs

  • Maple
    b:= proc(n, i) option remember; (m->
          `if`(mn, 0, i^2*b(n-i, i-1)))))(i*(i+1)/2)
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..40);  # Alois P. Heinz, Sep 10 2017
  • Mathematica
    Take[ CoefficientList[ Expand[ Product[1 + m^2*q^m, {m, 100}]], q], 31] (* Robert G. Wilson v, Apr 05 2005 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(n=1, N, 1+n^2*x^n)) \\ Seiichi Manyama, Sep 10 2017

Formula

G.f.: exp(Sum_{k>=1} Sum_{j>=1} (-1)^(k+1)*j^(2*k)*x^(j*k)/k). - Ilya Gutkovskiy, Jun 14 2018
Conjecture: log(a(n)) ~ sqrt(2*n) * (log(2*n) - 2). - Vaclav Kotesovec, Dec 27 2020

Extensions

More terms from Robert G. Wilson v, Apr 05 2004

A022693 Expansion of Product_{m>=1} 1/(1 + m*q^m).

Original entry on oeis.org

1, -1, -1, -2, 2, -1, 4, -1, 18, -22, 12, -26, 67, -86, 42, -235, 432, -364, 506, -868, 1434, -2396, 2225, -3348, 10842, -11822, 8049, -24468, 36662, -40024, 69766, -96052, 171976, -278242, 251886, -419723, 885806, -998468, 1103660, -2381042, 4009539, -4478416, 6372514, -9913690
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    Coefficients(&*[1/(1+m*x^m):m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 25 2018
  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1 + k*x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 15 2015 *)
    nmax = 40; CoefficientList[Series[Exp[-Sum[(-1)^(j+1)*PolyLog[-j, x^j]/j, {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 15 2015 *)
  • PARI
    m=50; q='q+O('q^m); Vec(prod(n=1,m,1/(1+n*q^n))) \\ G. C. Greubel, Feb 25 2018
    

Formula

From Vaclav Kotesovec, Dec 15 2015: (Start)
a(n) ~ (-1)^n * c * 3^(n/3), where
c = 2.0319526534291644237634198503666896166412... if mod(n,3) = 0
c = 1.8420902462379331740718256785549611496880... if mod(n,3) = 1
c = 1.6677871810486313099783673373643842640151... if mod(n,3) = 2.
(End)
From Benedict W. J. Irwin, Mar 19 2017: (Start)
Conjecture: a(n) = Sum_{i_1,i_2,i_3,...}[(-1)^(i_1+i_2+i_3+...)*Product_{n>0} n^i_n], where the sum is over all valid sequences of positive i_k such that i_1+2*i_2+3*i_3+4*i_4+...= n.
Examples: Setting i_k=0 unless explicitly mentioned.
n=1, (i_1=1), a(1)= -1^1 = -1.
n=2, (i_1=2) or (i_2=1), a(2) = 1^2 - 2^1 = -1.
n=3, (i_1=3) or (i_1=1,i_2=1) or (i_3=1), a(3)=-1^3 + 1^1*2^1 - 3^1 = -2.
(End)

A325504 Product of products of parts over all strict integer partitions of n.

Original entry on oeis.org

1, 1, 2, 6, 12, 120, 1440, 40320, 1209600, 1567641600, 2633637888000, 13905608048640000, 5046067048690483200000, 5289893008483207348224000000, 1266933607446134946465526579200000000, 99304891373531545064656621572980736000000000000
Offset: 0

Views

Author

Gus Wiseman, May 07 2019

Keywords

Examples

			The strict partitions of 5 are {(5), (4,1), (3,2)} with product a(5) = 5*4*1*3*2 = 120.
The sequence of terms together with their prime indices begins:
              1: {}
              1: {}
              2: {1}
              6: {1,2}
             12: {1,1,2}
            120: {1,1,1,2,3}
           1440: {1,1,1,1,1,2,2,3}
          40320: {1,1,1,1,1,1,1,2,2,3,4}
        1209600: {1,1,1,1,1,1,1,1,2,2,2,3,3,4}
     1567641600: {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,4}
  2633637888000: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,4,4}
		

Crossrefs

Cf. A000009, A006128, A007870 (non-strict version), A015723, A022629 (sum of products of parts), A066186, A066189, A066633, A246867, A325505, A325506, A325512, A325513, A325515.

Programs

  • Maple
    a:= n-> mul(i, i=map(x-> x[], select(x->
            nops(x)=nops({x[]}), combinat[partition](n)))):
    seq(a(n), n=0..15);  # Alois P. Heinz, Aug 03 2021
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, [1$2], `if`(i<1, [0, 1], ((f, g)->
         [f[1]+g[1], f[2]*g[2]*i^g[1]])(b(n, i-1), b(n-i, min(n-i, i-1)))))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=0..15);  # Alois P. Heinz, Aug 03 2021
  • Mathematica
    Table[Times@@Join@@Select[IntegerPartitions[n],UnsameQ@@#&],{n,0,10}]

Formula

A001222(a(n)) = A325515(n).
a(n) = A003963(A325506(n)).

A299164 Expansion of 1/(1 - x*Product_{k>=1} (1 + k*x^k)).

Original entry on oeis.org

1, 1, 2, 5, 14, 35, 91, 233, 597, 1517, 3885, 9922, 25333, 64683, 165181, 421828, 1077277, 2750993, 7025168, 17940298, 45814165, 116996152, 298774246, 762982615, 1948434235, 4975732669, 12706571546, 32448880807, 82864981016, 211613009498, 540397935771, 1380018797044, 3524165721799
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 04 2018

Keywords

Crossrefs

Antidiagonal sums of A297321.

Programs

  • Mathematica
    nmax = 32; CoefficientList[Series[1/(1 - x Product[1 + k x^k, {k, 1, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: 1/(1 - x*Product_{k>=1} (1 + k*x^k)).
a(0) = 1; a(n) = Sum_{k=1..n} A022629(k-1)*a(n-k).

A265758 Expansion of Product_{k>=1} ((1 + k*x^k)/(1 - k*x^k)).

Original entry on oeis.org

1, 2, 6, 16, 38, 88, 200, 428, 902, 1874, 3780, 7504, 14732, 28368, 54052, 101960, 189750, 349996, 640218, 1159624, 2084952, 3722008, 6593560, 11606268, 20308188, 35312170, 61065636, 105060200, 179795936, 306244136, 519291476, 876554860, 1473504846
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 15 2015

Keywords

Comments

Convolution of A022629 and A006906.

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1 + k*x^k)/(1 - k*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 3^(n/3), where
c = 28711548.45004804552683870974706458425598... if mod(n,3) = 0
c = 28711547.74098394497470795294574937283075... if mod(n,3) = 1
c = 28711547.58138731567204220029302329316039... if mod(n,3) = 2.

A325506 Product of Heinz numbers over all strict integer partitions of n.

Original entry on oeis.org

1, 2, 3, 30, 70, 2310, 180180, 21441420, 6401795400, 200984366583000, 41615822944675980000, 10515527757483671302380000, 4919824049783476260137727416400000, 5158181210492841550866520676965246284000000, 29776760895364738730693151196801613158042403043600000000
Offset: 0

Views

Author

Gus Wiseman, May 07 2019

Keywords

Comments

a(n) is the product of row n of A246867 (squarefree numbers arranged by sum of prime indices).
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The strict integer partitions of 6 are {(6), (5,1), (4,2), (3,2,1)}, with Heinz numbers {13,22,21,30}, with product 13*22*21*30 = 180180, so a(6) = 180180.
The sequence of terms together with their prime indices begins:
                     1: {}
                     2: {1}
                     3: {2}
                    30: {1,2,3}
                    70: {1,3,4}
                  2310: {1,2,3,4,5}
                180180: {1,1,2,2,3,4,5,6}
              21441420: {1,1,2,2,3,4,4,5,6,7}
            6401795400: {1,1,1,2,2,3,3,4,5,5,6,7,8}
       200984366583000: {1,1,1,2,2,2,3,3,3,4,4,5,5,6,6,7,8,9}
  41615822944675980000: {1,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,5,5,6,6,7,7,8,9,10}
		

Crossrefs

Programs

  • Mathematica
    Table[Times@@Prime/@(Join@@Select[IntegerPartitions[n],UnsameQ@@#&]),{n,0,15}]

Formula

a(n) = Product_{i = 1..A000009(n)} A246867(n,i).
A001222(a(n)) = A015723(n).
A056239(a(n)) = A066189(n).
A003963(a(n)) = A325504(n).
a(n) = A003963(A325505(n)).

A325513 Heinz number of the integer partition whose parts are the multiplicities in the multiset union of all strict integer partitions of n.

Original entry on oeis.org

1, 2, 2, 8, 8, 32, 144, 432, 2160, 27000, 582120, 7623000, 336936600, 6740402760, 543454231320, 57619849046760, 4683793138766280, 412882704970215480, 88171665744392750520, 12780536107937124847320, 2685589660883755945879560, 942036670625665177379096280
Offset: 0

Views

Author

Gus Wiseman, May 07 2019

Keywords

Comments

Also the Heinz number of row n of A015716 (with zeros removed).
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The strict integer partitions of 6 are {(6), (5,1), (4,2), (3,2,1)}, with multiset union {1,1,2,2,3,4,5,6}, with multiplicities (2,2,1,1,1,1), so a(6) = prime(1)^4*prime(2)^2 = 144.
The sequence of terms together with their prime indices begins:
               1: {}
               2: {1}
               2: {1}
               8: {1,1,1}
               8: {1,1,1}
              32: {1,1,1,1,1}
             144: {1,1,1,1,2,2}
             432: {1,1,1,1,2,2,2}
            2160: {1,1,1,1,2,2,2,3}
           27000: {1,1,1,2,2,2,3,3,3}
          582120: {1,1,1,2,2,2,3,4,4,5}
         7623000: {1,1,1,2,2,3,3,3,4,5,5}
       336936600: {1,1,1,2,2,3,3,4,5,5,6,7}
      6740402760: {1,1,1,2,2,3,4,4,4,6,6,7,8}
    543454231320: {1,1,1,2,2,3,4,4,5,6,7,8,9,10}
  57619849046760: {1,1,1,2,2,3,4,5,5,6,8,9,10,11,12}
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember;
          `if`(n>(i*(i+1)/2), 0, `if`(n=0, [1, 0], b(n, i-1)+
              (p-> p+[0, p[1]*x^i])(b(n-i, min(n-i, i-1)))))
        end:
    a:= n-> (p-> mul((c-> `if`(c=0, 1, ithprime(c)))(
        coeff(p, x, i)), i=1..degree(p)))(b(n$2)[2]):
    seq(a(n), n=0..21);  # Alois P. Heinz, Feb 23 2024
  • Mathematica
    Table[Times@@Prime/@Length/@Split[Sort[Join@@Select[IntegerPartitions[n],UnsameQ@@#&]]],{n,0,15}]

Formula

a(n) = A181819(A003963(A325505(n))).
A056239(a(n)) = A015723(n).
Previous Showing 11-20 of 75 results. Next