cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 81 results. Next

A015006 q-factorial numbers for q=7.

Original entry on oeis.org

1, 1, 8, 456, 182400, 510902400, 10017774259200, 1375009641495014400, 1321109263548409835520000, 8885253784030448738183147520000, 418310711031156574478261944188764160000, 137856159231156714984163673320892478249861120000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 1 select 1 else (7^n-1)*Self(n-1)/6: n in [1..15]]; // Vincenzo Librandi, Oct 25 2012
  • Mathematica
    RecurrenceTable[{a[1]==1, a[n]==((7^n - 1) * a[n-1])/6}, a, {n, 15}] (* Vincenzo Librandi, Oct 25 2012 *)
    Table[QFactorial[n, 7], {n, 15}] (* Bruno Berselli, Aug 14 2013 *)

Formula

a(n) = Product_{k=1..n} (7^k-1)/(7-1).
a(0) = 1, a(n) = (7^n - 1)*a(n-1)/6. - Vincenzo Librandi, Oct 25 2012
From Amiram Eldar, Jul 05 2025: (Start)
a(n) = Product_{k=1..n} A023000(k).
a(n) ~ c * 7^(n*(n+1)/2)/6^n, where c = A132035. (End)

Extensions

a(0)=1 prepended by Alois P. Heinz, Sep 08 2021

A240671 a(n) = floor(4^n/(2+2*cos(2*Pi/7))^n).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 12, 15, 18, 22, 28, 34, 42, 52, 64, 79, 98, 121, 149, 183, 226, 279, 343, 423, 521, 642, 791, 975, 1201, 1480, 1823, 2246, 2767, 3409, 4199, 5173, 6373, 7851, 9672, 11915, 14679, 18083
Offset: 0

Views

Author

Kival Ngaokrajang, Apr 10 2014

Keywords

Comments

a(n) is the perimeter (rounded down) of a heptaflake after n iterations, let a(0) = 1. The total number of sides is 7*A000302(n). The total number of holes is A023000(n).

Crossrefs

Cf. A000302, A023000, A116425, A240523 (pentaflake), A240572 (octaflake).

Programs

  • Maple
    A240671:=n->floor(4^n/(2+2*cos(2*Pi/7))^n); seq(A240671(n), n=0..50); # Wesley Ivan Hurt, Apr 10 2014
  • Mathematica
    Table[Floor[4^n/(2 + 2*Cos[2*Pi/7])^n], {n, 0, 50}] (* Wesley Ivan Hurt, Apr 10 2014 *)
  • PARI
    {a(n)=floor(4^n/(2+2*cos(2*Pi/7))^n)}
           for (n=0, 100, print1(a(n), ", "))

Formula

a(n) = floor(4^n/A116425(n)^n).

A016208 Expansion of 1/((1-x)*(1-3*x)*(1-4*x)).

Original entry on oeis.org

1, 8, 45, 220, 1001, 4368, 18565, 77540, 320001, 1309528, 5326685, 21572460, 87087001, 350739488, 1410132405, 5662052980, 22712782001, 91044838248, 364760483725, 1460785327100, 5848371485001, 23409176469808, 93683777468645, 374876324642820, 1499928942876001
Offset: 0

Views

Author

Keywords

Comments

Binomial transform of A085277. - Paul Barry, Jun 25 2003
Number of walks of length 2n+5 between two nodes at distance 5 in the cycle graph C_12. - Herbert Kociemba, Jul 05 2004

Crossrefs

Programs

  • GAP
    a:=[1,8,45];; for n in [4..30] do a[n]:=8*a[n-1]-19*a[n-2]+12*a[n-3]; od; Print(a); # Muniru A Asiru, Apr 19 2019
  • Mathematica
    Table[(2^(2*n + 3) - 3^(n + 2) + 1)/6, {n, 40}] (* Vladimir Joseph Stephan Orlovsky, Jan 19 2011 *)
    CoefficientList[Series[1/((1-x)(1-3x)(1-4x)),{x,0,30}],x] (* or *) LinearRecurrence[ {8,-19,12},{1,8,45},30] (* Harvey P. Dale, Apr 09 2012 *)
  • PARI
    Vec(1/((1-x)*(1-3*x)*(1-4*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
    

Formula

a(n) = 16*4^n/3 + 1/6 - 9*3^n/2. - Paul Barry, Jun 25 2003
a(0) = 0, a(1) = 8, a(n) = 7*a(n-1) - 12*a(n-2) + 1. - Vincenzo Librandi, Feb 10 2011
a(0) = 1, a(1) = 8, a(2) = 45, a(n) = 8*a(n-1) - 19*a(n-2) + 12*a(n-3). - Harvey P. Dale, Apr 09 2012

A016209 Expansion of 1/((1-x)(1-3x)(1-5x)).

Original entry on oeis.org

1, 9, 58, 330, 1771, 9219, 47188, 239220, 1205941, 6059229, 30384718, 152189310, 761743711, 3811110039, 19062724648, 95335146600, 476740303081, 2383895225649, 11920057258978, 59602029687090
Offset: 0

Views

Author

Keywords

Comments

For a combinatorial interpretation following from a(n) = A039755(n+2,2) = h^{(3)}A039755.%20-%20_Wolfdieter%20Lang">n, the complete homogeneous symmetric function of degree n in the symbols {1, 3, 5} see A039755. - _Wolfdieter Lang, May 26 2017

Examples

			a(2) = h^{(3)}_2 = 1^2 + 3^2 + 5^2 + 1^1*(3^1 + 5^1) + 3^1*5^1 = 58. - _Wolfdieter Lang_, May 26 2017
		

Crossrefs

Programs

  • Magma
    [(5^(n+2)-2*3^(n+2)+1)/8: n in [0..20]]; // Vincenzo Librandi, Sep 17 2011
  • Maple
    A016209 := proc(n) (5^(n+2)-2*3^(n+2)+1)/8; end proc: # R. J. Mathar, Mar 22 2011
  • Mathematica
    Join[{a=1,b=9},Table[c=8*b-15*a+1;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 07 2011 *)
    CoefficientList[Series[1/((1-x)(1-3x)(1-5x)),{x,0,30}],x] (* or *) LinearRecurrence[ {9,-23,15},{1,9,58},30] (* Harvey P. Dale, Feb 20 2020 *)
  • PARI
    a(n)=if(n<0,0,n+=2; (5^n-2*3^n+1)/8)
    

Formula

a(n) = A039755(n+2, 2).
a(n) = (5^(n+2) - 2*3^(n+2)+1)/8 = a(n-1) + A005059(n+1) = 8*a(n-1) - 15*a(n-2) + 1 = (A003463(n+2) - A003462(n+2))/2. - Henry Bottomley, Jun 06 2000
G.f.: 1/((1-x)(1-3*x)(1-5*x)). See the name.
E.g.f.: (25*exp(5*x) - 18*exp(3*x) + exp(x))/8, from the e.g.f. of the third column (k=2) of A039755. - Wolfdieter Lang, May 26 2017

A016218 Expansion of 1/((1-x)*(1-4*x)*(1-5*x)).

Original entry on oeis.org

1, 10, 71, 440, 2541, 14070, 75811, 400900, 2091881, 10808930, 55442751, 282806160, 1436400421, 7271480590, 36715316891, 185008240220, 930767824161, 4676745613050, 23475354034231, 117743274047080, 590182385739101, 2956775990710310, 14807336201610771
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Vincenzo Librandi, Feb 10 2011: (Start)
a(n) = a(n-1) + 5^(n+1) - 4^(n+1), n >= 1.
a(n) = 9*a(n-1) - 20*a(n-2) + 1, n >= 2. (End)
a(n) = 1/12 - 4^(n+2)/3 + 5^(n+2)/4. - R. J. Mathar, Mar 15 2011

A016256 Expansion of 1/((1-x)*(1-8*x)*(1-9*x)).

Original entry on oeis.org

1, 18, 235, 2700, 28981, 298278, 2984095, 29253600, 282456361, 2695498938, 25486623955, 239196683700, 2231306698141, 20710052641998, 191416812647815, 1762962024789000, 16188343910770321, 148268580698287458, 1355005110295423675, 12359749064745505500
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    a:=n->sum(9^(n-j)-8^(n-j),j=0..n): seq(a(n), n=1..19); # Zerinvary Lajos, Jan 04 2007
  • Mathematica
    Table[(-8^(n + 2) + 7*9^(n + 1) + 1)/56, {n, 40}] (* and *) CoefficientList[Series[1/((1 - z) (1 - 8*z) (1 - 9*z)), {z, 0, 40}], z] (* Vladimir Joseph Stephan Orlovsky, Jul 21 2011 *)
  • PARI
    Vec(1/((1-x)*(1-8*x)*(1-9*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012

Formula

G.f.: 1/((1-x)*(1-8*x)*(1-9*x)).
a(n) = 17*a(n-1) - 72*a(n-2) + 1. - Vincenzo Librandi, Feb 10 2011
a(n) = 9^(n+2)/8 - 8^(n+2)/7 + 1/56. - R. J. Mathar, Mar 14 2011
a(n) = 18*a(n-1) - 89*a(n-2) + 72*a(n-3). - Wesley Ivan Hurt, Apr 20 2023

A168175 Expansion of 1/(1 - 4*x + 7*x^2).

Original entry on oeis.org

1, 4, 9, 8, -31, -180, -503, -752, 513, 7316, 25673, 51480, 26209, -255524, -1205559, -3033568, -3695359, 6453540, 51681673, 161551912, 284435937, 6880364, -1963530103, -7902282960, -17864421119, -16141703756, 60484132809
Offset: 0

Views

Author

Roger L. Bagula, Nov 19 2009

Keywords

Comments

Also the coefficient of i of Q^(n+1), Q being the quaternion 2+i+j+k. The real part of the quaternion power is A213421, see also A087455, A088138, A128018. - Stanislav Sykora, Jun 11 2012
a(n)*(-1)^n gives the coefficient c(7^n) of (eta(z^6))^4, a modular cusp form of weight 2, when expanded in powers of q = exp(2*Pi*i*z), Im(z) > 0, assuming alpha-multiplicativity (but not for primes 2 and 3) with alpha(x) = x (weight 2) and input c(7) = -4. Eta is the Dedekind function. See the Apostol reference, p. 138, eq. (54) for alpha-multiplicativity and p. 130, eq. (39) with k=2. See also A000727(n) = b(n) where c(7^n) = b((7^n-1)/6) = b(A023000(n)), n >= 0. Proof: The alpha-multiplicity with alpha(1) = 1 and c(1) = 1 leads from p^n = p^(n-1)*p to the recurrence c_n = c*c_(n-1) - a*c(n-2), with c_n = c(p^n), c = c(p) and a = alpha(p). Inputs are c_{-1} = 0 and c_0 = c(1) = 1. This gives the polynomial c_n = sqrt(a)^n * S(n,c/sqrt(a)), with Chebyshev's S-polynomials (A049310). See the Apostol reference, Exercise 6., p. 139. Here p = 7, c = -4. - Wolfdieter Lang, Apr 27 2016

Examples

			G.f. = 1 + 4*x + 9*x^2 + 8*x^3 - 31*x^4 - 180*x^5 - 503*x^6 - 752*x^7 + ... - _Michael Somos_, Feb 23 2020
		

References

  • Tom M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Second edition, Springer, 1990, pp. 130, 138 - 139.

Crossrefs

Programs

  • Magma
    I:=[1,4]; [n le 2 select I[n] else 4*Self(n-1)-7*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jun 25 2012
    
  • Mathematica
    CoefficientList[Series[1/(1-4x+7x^2),{x,0,30}],x] (* or *) LinearRecurrence[ {4,-7},{1,4},30] (* Harvey P. Dale, Nov 28 2014 *)
  • PARI
    {a(n) = my(s=1, t=1); if( n<0, n=-2-n; s=-1; t=1/7); s * t^(n+1) * polcoeff(1 / (1 - 4*x + 7*x^2) + x * O(x^n), n)}; /* Michael Somos, Feb 23 2020 */

Formula

a(n) = (1/2 - i/sqrt(3))*(2 + i*sqrt(3))^n + (1/2 + i/sqrt(3))*(2 - i*sqrt(3))^n (Binet formula), where i is the imaginary unit.
a(n) = 4*a(n-1) - 7*a(n-2).
a(n) = sqrt(7)^n * S(n, 4/sqrt(7)), n >= 0, with Chebyshev's S polynomials (A049310). - Wolfdieter Lang, Apr 27 2016
E.g.f.: (2*sqrt(3)*sin(sqrt(3)*x) + 3*cos(sqrt(3)*x))*exp(2*x)/3. - Ilya Gutkovskiy, Apr 27 2016
a(n) = (-1) * 7^(n+1) * a(-2-n) for all n in Z. - Michael Somos, Feb 23 2020

A218750 a(n) = (47^n - 1)/46.

Original entry on oeis.org

0, 1, 48, 2257, 106080, 4985761, 234330768, 11013546097, 517636666560, 24328923328321, 1143459396431088, 53742591632261137, 2525901806716273440, 118717384915664851681, 5579717091036248029008, 262246703278703657363377, 12325595054099071896078720
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 47 (A009991).

Crossrefs

Programs

Formula

a(n) = floor(47^n/46).
G.f.: x/(47*x^2-48*x+1) = x/((1-x)*(1-47*x)). [Colin Barker, Nov 06 2012]
a(0)=0, a(n) = 47*a(n-1) + 1. - Vincenzo Librandi, Nov 08 2012
a(n) = 48*a(n-1) - 47*a(n-2). - Wesley Ivan Hurt, Jan 25 2022
E.g.f.: exp(24*x)*sinh(23*x)/23. - Elmo R. Oliveira, Aug 27 2024

A368151 Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 1 + 3x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >=3, where u = p(2,x), v = 2 - x^2.

Original entry on oeis.org

1, 1, 3, 3, 6, 8, 5, 21, 25, 21, 11, 48, 101, 90, 55, 21, 123, 290, 414, 300, 144, 43, 282, 850, 1416, 1551, 954, 377, 85, 657, 2255, 4671, 6109, 5481, 2939, 987, 171, 1476, 5883, 13986, 22374, 24300, 18585, 8850, 2584, 341, 3303, 14736, 40320, 74295, 97713
Offset: 1

Views

Author

Clark Kimberling, Dec 31 2023

Keywords

Comments

Because (p(n,x)) is a strong divisibility sequence, for each integer k, the sequence (p(n,k)) is a strong divisibility sequence of integers.

Examples

			First eight rows:
   1
   1     3
   3     6    8
   5    21    25    21
  11    48   101    90    55
  21   123   290   414   300  144
  43   282   850  1416  1551  954    377
  85   657  2255  4671  6109  5481  2939  987
Row 4 represents the polynomial p(4,x) = 5 + 21 x + 25 x^2 + 21 x^3, so (T(4,k)) = (5,21,25,21), k=0..3.
		

Crossrefs

Cf. A001045 (column 1); A001906 (p(n,n-1)); A001076 (row sums), (p(n,1)); A077985 (alternating row sums), (p(n,-1)); A186446 (p(n,2)), A107839, (p(n,-2)); A190989, (p(n,3)); A023000, (p(n,-3)); A094440, A367208, A367209, A367210, A367211, A367297, A367298, A367299, A367300, A367301, A368150.

Programs

  • Mathematica
    p[1, x_] := 1; p[2, x_] := 1 + 3 x; u[x_] := p[2, x]; v[x_] := 2 - x^2;
    p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
    Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
    Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]

Formula

p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >=3, where p(1,x) = 1, p(2,x) = 1 + 3 x, u = p(2,x), and v = 2 - x^2.
p(n,x) = k*(b^n - c^n), where k = -1/sqrt(9 + 6 x + 5 x^2), b = (1/2) (3 x + 1 - 1/k), c = (1/2) (3 x + 1 + 1/k).

A218726 a(n) = (23^n - 1)/22.

Original entry on oeis.org

0, 1, 24, 553, 12720, 292561, 6728904, 154764793, 3559590240, 81870575521, 1883023236984, 43309534450633, 996119292364560, 22910743724384881, 526947105660852264, 12119783430199602073, 278755018894590847680, 6411365434575589496641, 147461404995238558422744
Offset: 0

Views

Author

M. F. Hasler, Nov 04 2012

Keywords

Comments

Partial sums of powers of 23, q-integers for q=23: diagonal k=1 in triangle A022187.
Partial sums are in A014909. Also, the sequence is related to A014941 by A014941(n) = n*a(n) - Sum{a(i), i=0..n-1} for n > 0. - Bruno Berselli, Nov 07 2012

Crossrefs

Programs

Formula

From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1-x)*(1-23*x)).
a(n) = floor(23^n/22).
a(n) = 24*a(n-1) - 23*a(n-2). (End)
E.g.f.: exp(12*x)*sinh(11*x)/11. - Elmo R. Oliveira, Aug 27 2024
Previous Showing 31-40 of 81 results. Next