cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 81 results. Next

A319076 Square array T(n,k) read by antidiagonal upwards in which column k lists the partial sums of the powers of the k-th prime, n >= 0, k >= 1.

Original entry on oeis.org

1, 3, 1, 7, 4, 1, 15, 13, 6, 1, 31, 40, 31, 8, 1, 63, 121, 156, 57, 12, 1, 127, 364, 781, 400, 133, 14, 1, 255, 1093, 3906, 2801, 1464, 183, 18, 1, 511, 3280, 19531, 19608, 16105, 2380, 307, 20, 1, 1023, 9841, 97656, 137257, 177156, 30941, 5220, 381, 24, 1, 2047, 29524, 488281, 960800, 1948717
Offset: 0

Views

Author

Omar E. Pol, Sep 09 2018

Keywords

Comments

T(n,k) is also the sum of the divisors of the n-th nonnegative power of the k-th prime, n >= 0, k >= 1.

Examples

			The corner of the square array is as follows:
         A126646 A003462 A003463  A023000    A016123    A091030     A091045
A000012        1,      1,      1,       1,         1,         1,          1, ...
A008864        3,      4,      6,       8,        12,        14,         18, ...
A060800        7,     13,     31,      57,       133,       183,        307, ...
A131991       15,     40,    156,     400,      1464,      2380,       5220, ...
A131992       31,    121,    781,    2801,     16105,     30941,      88741, ...
A131993       63,    364,   3906,   19608,    177156,    402234,    1508598, ...
.......      127,   1093,  19531,  137257,   1948717,   5229043,   25646167, ...
.......      255,   3280,  97656,  960800,  21435888,  67977560,  435984840, ...
.......      511,   9841, 488281, 6725601, 235794769, 883708281, 7411742281, ...
...
		

Crossrefs

Programs

  • PARI
    T(n, k) = sigma(prime(k)^n); \\ Michel Marcus, Sep 13 2018

Formula

T(n,k) = A000203(A000040(k)^n).
T(n,k) = Sum_{j=0..n} A000040(k)^j.
T(n,k) = Sum_{j=0..n} A319075(j,k).
T(n,k) = (A000040(k)^(n+1) - 1)/(A000040(k) - 1).
T(n,k) = (A000040(k)^(n+1) - 1)/A006093(k).

A361475 Array read by ascending antidiagonals: A(n, k) = (k^n - 1)/(k - 1), with k >= 2.

Original entry on oeis.org

0, 1, 0, 3, 1, 0, 7, 4, 1, 0, 15, 13, 5, 1, 0, 31, 40, 21, 6, 1, 0, 63, 121, 85, 31, 7, 1, 0, 127, 364, 341, 156, 43, 8, 1, 0, 255, 1093, 1365, 781, 259, 57, 9, 1, 0, 511, 3280, 5461, 3906, 1555, 400, 73, 10, 1, 0, 1023, 9841, 21845, 19531, 9331, 2801, 585, 91, 11, 1, 0
Offset: 0

Views

Author

Stefano Spezia, Mar 13 2023

Keywords

Examples

			The array begins:
   0,  0,  0,   0,   0, ...
   1,  1,  1,   1,   1, ...
   3,  4,  5,   6,   7, ...
   7, 13, 21,  31,  43, ...
  15, 40, 85, 156, 259, ...
  ...
		

Crossrefs

Cf. A003992, A361291 (k=2*n+1), A361476 (antidiagonal sums).
Cf. A000225 (k=2), A003462 (k=3), A002450 (k=4), A003463 (k=5), A003464 (k=6), A023000 (k=7), A023001 (k=8), A002452 (k=9), A002275 (k=10), A016123 (k=11).

Programs

  • Mathematica
    A[n_,k_]:=(k^n-1)/(k-1); Flatten[Table[A[n-k+2,k],{n,0,10},{k,2,n+2}]]

Formula

E.g.f. of column k: exp(x)*(exp((k-1)*x) - 1)/(k - 1).
E.g.f. of column k: 2*exp((k+1)*x/2)*sinh((k-1)*x/2)/(k - 1).
A(n, k) = Sum_{i=0..n-1} k^i.

A096041 Triangle read by rows: T(n,k) = (n+1,k)-th element of (M^7-M)/6, where M is the infinite lower Pascal's triangle matrix, 1<=k<=n.

Original entry on oeis.org

1, 8, 2, 57, 24, 3, 400, 228, 48, 4, 2801, 2000, 570, 80, 5, 19608, 16806, 6000, 1140, 120, 6, 137257, 137256, 58821, 14000, 1995, 168, 7, 960800, 1098056, 549024, 156856, 28000, 3192, 224, 8, 6725601, 8647200, 4941252, 1647072, 352926, 50400
Offset: 1

Views

Author

Gary W. Adamson, Jun 17 2004

Keywords

Examples

			Triangle begins:
1
8 2
57 24 3
400 228 48 4
2801 2000 570 80 5
19608 16806 6000 1140 120 6
		

Crossrefs

Cf. A007318. First column gives A023000. Row sums give A016131.

Programs

  • Maple
    P:= proc(n) option remember; local M; M:= Matrix(n, (i, j)-> binomial(i-1, j-1)); (M^7-M)/6 end: T:= (n, k)-> P(n+1)[n+1, k]: seq(seq(T(n, k), k=1..n), n=1..11); # Alois P. Heinz, Oct 07 2009
  • Mathematica
    P[n_] := P[n] = With[{M = Array[Binomial[#1-1, #2-1]&, {n, n}]}, (MatrixPower[M, 7] - M)/6]; T[n_, k_] := P[n+1][[n+1, k]]; Table[ Table[T[n, k], {k, 1, n}], {n, 1, 11}] // Flatten (* Jean-François Alcover, Jan 28 2015, after Alois P. Heinz *)

Extensions

Edited with more terms by Alois P. Heinz, Oct 07 2009

A102303 a(n) = (1/6) * (7^(n+1) - 3*(-1)^n + 2).

Original entry on oeis.org

1, 9, 57, 401, 2801, 19609, 137257, 960801, 6725601, 47079209, 329554457, 2306881201, 16148168401, 113037178809, 791260251657, 5538821761601, 38771752331201, 271402266318409, 1899815864228857, 13298711049602001, 93090977347214001, 651636841430498009
Offset: 0

Views

Author

Roger L. Bagula, Mar 15 2005

Keywords

Crossrefs

Programs

  • Magma
    [(7^(n+1)-3*(-1)^n+2)/6: n in [0..50]]; // G. C. Greubel, Feb 03 2024
    
  • Mathematica
    Table[(7^(n+1) -3*(-1)^n +2)/6, {n, 0, 50}]
  • SageMath
    [(7^(n+1)-3*(-1)^n+2)/6 for n in range(51)] # G. C. Greubel, Feb 03 2024

Formula

From Chai Wah Wu, Mar 11 2021: (Start)
a(n) = 7*a(n-1) + a(n-2) - 7*a(n-3) for n > 2.
G.f.: -(1 + 2*x - 7*x^2)/((1 - x)*(1 + x)*(1 - 7*x)). (End)
From G. C. Greubel, Feb 03 2024: (Start)
a(n) = A023000(n+1) + A000035(n).
E.g.f.: (1/6)*(-3*exp(-x) + 2*exp(x) + 7*exp(7*x)). (End)

Extensions

Edited by N. J. A. Sloane, May 29 2007

A102360 a(n) = sigma((7^n - 1)/6), where sigma(n) is the sum of positive divisors of n.

Original entry on oeis.org

1, 15, 80, 961, 2802, 52800, 142020, 2347506, 10512320, 96837120, 329849040, 8619170560, 16148168402, 221483030400, 1146781040640, 14442767744328, 38774519976900, 813898294809600, 1904350030969680, 35410174950039552
Offset: 1

Views

Author

Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Feb 22 2005

Keywords

Crossrefs

Programs

Formula

a(n) = A000203(A023000(n)). - Amiram Eldar, Feb 21 2020

A125823 Numbers whose base 7 representation is 4444....4.

Original entry on oeis.org

0, 4, 32, 228, 1600, 11204, 78432, 549028, 3843200, 26902404, 188316832, 1318217828, 9227524800, 64592673604, 452148715232, 3165041006628, 22155287046400, 155087009324804, 1085609065273632, 7599263456915428, 53194844198408000, 372363909388856004, 2606547365721992032
Offset: 1

Views

Author

Zerinvary Lajos, Feb 03 2007

Keywords

Examples

			Base 7.................decimal
0.........................0
4.........................4
44.......................32
444.....................228
4444...................1600
44444.................11204
444444................78432
4444444..............549028
44444444............3843200
etc....................etc...
		

Crossrefs

Cf. A023000.

Programs

  • GAP
    List([1..30], n-> 2*(7^(n-1) -1)/3); # G. C. Greubel, Aug 03 2019
  • Magma
    [2*(7^(n-1) -1)/3: n in [1..30]]; // G. C. Greubel, Aug 03 2019
    
  • Maple
    seq(4*(7^n-1)/6, n=0..21);
  • Mathematica
    2*(7^(Range[30]-1) -1)/3 (* G. C. Greubel, Aug 03 2019 *)
  • PARI
    vector(30, n, 2*(7^(n-1) -1)/3) \\ G. C. Greubel, Aug 03 2019
    
  • Sage
    [2*(7^(n-1) -1)/3 for n in (1..30)] # G. C. Greubel, Aug 03 2019
    

Formula

a(n) = 2*(7^(n-1) - 1)/3 = 4*A023000(n-1).
a(n) = 7*a(n-1) + 4, with a(1)=0. - Vincenzo Librandi, Sep 30 2010
From G. C. Greubel, Aug 03 2019: (Start)
G.f.: 4*x^2/((1-x)*(1-7*x)).
E.g.f.: 2*(exp(7*x) - exp(x))/3. (End)

Extensions

Terms a(21) onward added by G. C. Greubel, Aug 03 2019

A272199 Expansion of 1/(1 - 2*x + 13*x^2).

Original entry on oeis.org

1, 2, -9, -44, 29, 630, 883, -6424, -24327, 34858, 385967, 318780, -4380011, -12904162, 31131819, 230017744, 55321841, -2879586990, -6478357913, 24477915044, 133174482957, -51863929658, -1834996137757, -2995761189960, 17863427410921, 74671750291322
Offset: 0

Views

Author

Wolfdieter Lang, Apr 27 2016

Keywords

Comments

a(n) gives the coefficient c(13^n) of (eta(z^6))^4, a modular cusp form of weight 2, when expanded in powers of q = exp(2*Pi*i*z), Im(z) > 0, assuming alpha-multiplicativity (not valid for p = 2 and 3) with alpha(x) = x (weight 2) and input c(13) = +2. Eta is the Dedekind function. See the Apostol reference, p. 138, eq. (54) for alpha-multiplicativity and p. 130, eq. (39) with k=2. See also A000727 where a(n)=c(13^n) = A000727((13^n-1)/6)=A000727(2*A091030(n)), n >= 0. For the proof that alpha-multiplicativity leads to the recurrence involving Chebyshev's S polynomials see a comment on A168175, and the Apostol reference, Exercise 6., p. 139.

Examples

			a(2) = c(13^2) = A000727(2*A091030(2)) =
A000727(28) = -9.
		

References

  • Tom M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Second edition, Springer, 1990, pp. 130, 138 - 139.

Crossrefs

Programs

  • Magma
    I:=[1,2]; [n le 2 select I[n] else 2*Self(n-1)-13*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 25 2016
  • Mathematica
    CoefficientList[Series[1/(1 - 2 x + 13 x^2), {x, 0, 25}], x] (* Michael De Vlieger, Apr 27 2016 *)
    LinearRecurrence[{2, -13}, {1, 2}, 30] (* Vincenzo Librandi, Nov 25 2016 *)
  • PARI
    Vec(1/(1-2*x+13*x^2) + O(x^99)) \\ Altug Alkan, Apr 28 2016
    

Formula

G.f.: 1/(1 - 2*x + 13*x^2).
a(n) = 2*a(n-1) - 13*a(n-2), a(-1) = 0, a(0) = 1.
a(n) = sqrt(13)^n * S(n, 2/sqrt(13)), n >= 0, with Chebyshev's S polynomials (A049310).
a(n) = (Ap^(n+1) - Am^(n+1))/(Ap - Am) with Ap:= 1 + 2*sqrt(3)*i and Am = 1 - 2*sqrt(3)*i, (Binet - de Moivre formula), where i is the imaginary unit.
E.g.f.: (sqrt(3)*sin(2*sqrt(3)*x) + 6*cos(2*sqrt(3)*x))*exp(x)/6. - Ilya Gutkovskiy, Apr 27 2016

A016198 Expansion of g.f. 1/((1-x)*(1-2*x)*(1-5*x)).

Original entry on oeis.org

1, 8, 47, 250, 1281, 6468, 32467, 162590, 813461, 4068328, 20343687, 101722530, 508620841, 2543120588, 12715635707, 63578244070, 317891351421, 1589457019248, 7947285620527, 39736429151210, 198682147853201, 993410743460308, 4967053725690147, 24835268645227950
Offset: 0

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Crossrefs

Programs

Formula

a(n) = (25*5^n - 16*2^n + 3)/12. - Bruno Berselli, Feb 09 2011
a(n) = [(5^0-2^0) + (5^1-2^1) + ... + (5^n-2^n)]/3. - r22lou(AT)cox.net, Nov 14 2005
a(0)=1, a(n) = 5*a(n-1) + 2^(n+1) - 1. - Vincenzo Librandi, Feb 07 2011
From Elmo R. Oliveira, Mar 26 2025: (Start)
E.g.f.: exp(x)*(25*exp(4*x) - 16*exp(x) + 3)/12.
a(n) = 8*a(n-1) - 17*a(n-2) + 10*a(n-3).
a(n) = A016127(n+1) - A003463(n+2). (End)

Extensions

More terms from Wesley Ivan Hurt, May 05 2014

A016201 Expansion of g.f. 1/((1-x)*(1-2*x)*(1-7*x)).

Original entry on oeis.org

1, 10, 77, 554, 3909, 27426, 192109, 1345018, 9415637, 65910482, 461375421, 3229632042, 22607432485, 158252043778, 1107764339213, 7754350440026, 54280453211253, 379963172740914, 2659742209710685, 18618195469023370, 130327368285260741, 912291578001019490, 6386041046015525037
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    a:=n->sum((7^(n-j+1)-2^(n-j+1))/5, j=0..n+1): seq(a(n), n=0..19); # Zerinvary Lajos, Jan 15 2007
  • Mathematica
    CoefficientList[Series[1/((1-x)(1-2x)(1-7x)),{x,0,20}],x](* or *) LinearRecurrence[{10,-23,14},{1,10,77},20] (* Harvey P. Dale, Mar 06 2019 *)

Formula

a(n) = (49*7^n - 24*2^n + 5)/30. - Bruno Berselli, Feb 09 2011
a(0)=1, a(n) = 7*a(n-1) + 2^(n+1) - 1. - Vincenzo Librandi, Feb 09 2011
From Elmo R. Oliveira, Mar 27 2025: (Start)
E.g.f.: exp(x)*(49*exp(6*x) - 24*exp(x) + 5)/30.
a(n) = 10*a(n-1) - 23*a(n-2) + 14*a(n-3).
a(n) = A016130(n+1) - A023000(n+2). (End)

Extensions

More terms from Elmo R. Oliveira, Mar 27 2025

A125729 Numbers whose base 7 representation is 555....5.

Original entry on oeis.org

0, 5, 40, 285, 2000, 14005, 98040, 686285, 4804000, 33628005, 235396040, 1647772285, 11534406000, 80740842005, 565185894040, 3956301258285, 27694108808000, 193858761656005, 1357011331592040, 9499079321144285
Offset: 1

Views

Author

Zerinvary Lajos, Feb 02 2007

Keywords

Examples

			Base 7.............decimal
0........................0
5........................5
55......................40
555....................285
5555..................2000
55555................14005
555555...............98040
5555555.............686285
55555555...........4804000
555555555.........33628005
etc....................etc...
		

Programs

  • Maple
    seq(5*(7^n-1)/6, n=0..21);
  • Mathematica
    Table[FromDigits[Table[5,n],7],{n,0,19}] (* James C. McMahon, Dec 21 2024 *)

Formula

a(n) = 5*(7^(n-1)-1)/6 = 5*A023000(n-1).
a(n) = 7*a(n-1) + 5 for n > 1. - Vincenzo Librandi, Sep 30 2010
G.f.: 5*x^2 / ( (7*x-1)*(x-1) ). - R. J. Mathar, Sep 30 2013
Previous Showing 71-80 of 81 results. Next