cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 63 results. Next

A128288 a(n) = A023163(n)/3 for n > 1.

Original entry on oeis.org

3, 13, 37, 43, 53, 67, 83, 107, 157, 163, 173, 197, 227, 277, 283, 293, 307, 317, 347, 373, 397, 443, 467, 523, 547, 557, 563, 587, 613, 643, 653, 677, 683, 733, 757, 773, 787, 797, 827, 853, 877, 883, 907, 947, 997, 1013, 1093, 1117, 1123, 1163, 1187, 1213
Offset: 2

Views

Author

Alexander Adamchuk, Feb 24 2007

Keywords

Comments

3 divides A023163(n) for n > 1. A023163(n) are the numbers n such that Fibonacci(n) == -2 (mod n). Almost all terms of {a(n)} are prime that belong to A003631 = {2, 3, 7, 13, 17, 23, 37, 43, 47, 53, 67, 73, 83, 97} (primes congruent to {2, 3} mod 5) that are also the primes p that divide Fibonacci(p+1). The first composite term is a(74) = 1853 = 17*109. The second composite term is 9701 = 89*109. The third composite term is 10877 = 73*149 belong to A069107(n) Composite n such that n divides F(n+1) where F(k) are the Fibonacci numbers. Composite terms in {a(n)} are listed in A128289 = {1853, 9701, 10877, 17261, ...}.

Examples

			A023163 begins {1, 9, 39, 111, 129, 159, 201, 249, 321, 471, 489, 519, ...}.
Thus a(2) = A023163(2)/3 = 9/3 = 3, a(3) = A023163(3)/3 = 39/3 = 13.
		

Crossrefs

Cf. A002708, A023172, A023173, A023162, A023163 (numbers k such that Fibonacci(k) == -2 (mod k)).
Cf. A003631, A069107, A128289 (composite terms in A128288).

Formula

a(n) = A023163(n)/3 for n > 1.

A128974 Numbers k such that 12k does not divide Fibonacci(12k).

Original entry on oeis.org

7, 11, 13, 17, 19, 21, 22, 23, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 44, 47, 49, 52, 53, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 71, 73, 74, 76, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91, 93, 94, 95, 97, 99, 101, 103, 104, 105, 106, 107, 109, 111, 113, 115, 116, 117
Offset: 1

Views

Author

Alexander Adamchuk, May 11 2007

Keywords

Comments

Complement of A072378 = {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 24, 25, 27, ...} (numbers k such that 12k divides Fibonacci(12k)). It appears that {a(n)} includes all powers p^k for prime p > 5 and integer k > 0.

Crossrefs

Cf. A072378 (numbers k such that 12k divides Fibonacci(12k)).
Cf. A023172 (numbers k such that k divides Fibonacci(k)).

Programs

  • Mathematica
    Select[ Range[400], !IntegerQ[ Fibonacci[ 12# ] / (12#) ] & ]

A129066 Numbers k such that k divides Fibonacci(k) with multiples of 12 excluded.

Original entry on oeis.org

1, 5, 25, 125, 625, 3125, 15625, 75025, 78125, 375125, 390625, 1875625, 1953125, 9378125, 9765625, 46890625, 48828125, 234453125, 244140625, 332813125, 1172265625, 1220703125, 1664065625, 5628750625, 5861328125, 6103515625, 8320328125, 9006076025
Offset: 1

Views

Author

Alexander Adamchuk, May 11 2007

Keywords

Comments

Set difference of A023172 and 12*A072378.
The sequence is closed under multiplication.
Also, if m is in this sequence (i.e., gcd(F(m),m)=m) then F(m) is in this sequence (since gcd(F(F(m)),F(m)) = F(gcd(F(m),m)) = F(m)).
In particular, this sequence includes all terms of geometric progressions 5^k*Fibonacci(5^m) for integers k >= 0 and m >= 0.

Examples

			a(1) = Fibonacci(1) = 1,
a(2) = Fibonacci(5) = 5,
a(3)..a(7) = {5^2, 5^3, 5^4, 5^5, 5^6},
a(8) = 75025 = 5^2*3001 = Fibonacci(5^2),
a(9) = 5^7,
a(10) = 375125 = 5^3*3001 = 5*Fibonacci(5^2),
a(11) = 5^8.
		

Crossrefs

Prime divisors are given in A171980. Their smallest multiples are given in A171981.

Programs

  • Mathematica
    Do[ If[ !IntegerQ[ n/12 ] && IntegerQ[ Fibonacci[n] / n ], Print[n] ], {n,1,5^8} ]
  • PARI
    is(n)=n%12 && (Mod([0,1;1,1],n)^n*[0;1])[1,1]==0 \\ Charles R Greathouse IV, Nov 04 2016

Extensions

Edited and extended by Max Alekseyev, Sep 20 2009
a(1)=1 added by Zak Seidov, Nov 01 2009
Edited and extended by Max Alekseyev, Jan 20 2010

A270313 Denominator of Fibonacci(n)/n.

Original entry on oeis.org

1, 2, 3, 4, 1, 3, 7, 8, 9, 2, 11, 1, 13, 14, 3, 16, 17, 9, 19, 4, 21, 22, 23, 1, 1, 26, 27, 28, 29, 3, 31, 32, 33, 34, 7, 1, 37, 38, 39, 8, 41, 21, 43, 44, 9, 46, 47, 1, 49, 2, 51, 52, 53, 27, 11, 8, 57, 58, 59, 1, 61, 62, 63, 64, 13, 33, 67, 68, 69, 14, 71, 1, 73, 74, 3
Offset: 1

Views

Author

Keywords

Comments

a(n) = 1 for n in A023172; a(n) = n for n in A074215. - Robert Israel, Mar 16 2016

Crossrefs

Cf. A000045, A023172, A074215, A104714, A127787, A270312 (numerators).

Programs

  • Maple
    seq(n/igcd(n,combinat:-fibonacci(n)), n=1..100); # Robert Israel, Mar 16 2016
  • Mathematica
    Table[Fibonacci[n]/n, {n, 1, 100}] // Denominator
  • PARI
    a(n) = denominator(fibonacci(n)/n); \\ Michel Marcus, Mar 16 2016

Formula

a(n) = n/A104714(n). - Robert Israel, Mar 16 2016

A128289 Composite terms in A128288(n) = A023163(n)/3 for n>1.

Original entry on oeis.org

1853, 9701, 10877, 17261, 23323, 27403, 75077, 80189, 113573, 120581, 161027, 162133, 163059, 196877, 213749, 291941, 361397, 400987, 427549, 482677, 635627, 667589, 941291, 1030373, 1033997, 1140701, 1196061, 1256293, 1751747, 1816363, 1842581, 2288453, 2662277
Offset: 1

Views

Author

Alexander Adamchuk, Feb 24 2007

Keywords

Comments

3 divides A023163(n) for n>1. A023163(n) are the numbers n such that Fibonacci(n) == -2 (mod n).
Almost all terms of A128288 are prime that belong to A003631 = {2, 3, 7, 13, 17, 23, 37, 43, 47, 53, 67, 73, 83, 97} Primes congruent to {2, 3} mod 5; that are also the primes p that divide Fibonacci(p+1).
a(3) = 10877 = 73*149 belongs to A069107 Composite n such that n divides Fibonacci(n+1).
a(3) = 10877 and a(4) = 17261 belong to A094395 Odd composite n such that n divides Fibonacci(n) + 1.

Examples

			a(1) = A128288(74) = 1853 = 17*109.
a(2) = 9701 = 89*109.
a(3) = 10877 = 73*149.
a(4) = 17261 = 41*421.
a(5) = 23323 = 83*281.
		

Crossrefs

Cf. A128288, A002708, A023172, A023173, A023162, A023163 = numbers n such that Fib(n) == -2 (mod n). Cf. A003631, A069107, A094413, A094395 = Odd composite n such that n divides Fibonacci(n) + 1.

Programs

  • Mathematica
    Do[ f = Mod[ Fibonacci[3n], 3n ]; If[ !PrimeQ[n] && f == 3n-2, Print[ {n, FactorInteger[n]} ]], {n,1,25000} ]

Extensions

Two more terms from R. J. Mathar, Oct 08 2007
a(9)-a(33) from Amiram Eldar, Apr 07 2019

A128935 a(n) = Fibonacci(5^n) / 5^n.

Original entry on oeis.org

1, 1, 3001, 475400918060101145703001, 29642179764875707696452732234250095350341524541114277856812964100763567848899514572925690068090872073476146381237687662210078001
Offset: 0

Views

Author

Alexander Adamchuk, May 11 2007

Keywords

Comments

Numbers k such that k divides Fibonacci(k) are listed in A023172.
All powers of 5 belong to A023172.
5^n divides Fibonacci(5^n).
a(n) == 1 (mod 1000).
{a(n+1)/a(n)} = {1, 3001, 158414167964045700001, 62351961552434956321060201440347372028390478647963811251289490034177804212636326088548682319305439375001, ...}.

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n = 0 then 1 else 5^(4*n-3)*a(n-1)^5 - 5^(2*n-1)*a(n-1)^3 + a(n-1) end if; end proc: seq(a(n), n = 0..5); # Peter Bala, Nov 24 2022
  • Mathematica
    Table[ Fibonacci[ 5^n ] / 5^n, {n,0,4} ]

Formula

a(n) = Fibonacci(5^n) / 5^n.
a(n+1) = 5^(4*n+1)*a(n)^5 - 5^(2*n+1)*a(n)^3 + a(n) with a(0) = 1. - Peter Bala, Nov 24 2022

A130163 Numbers k such that k^2 divides 2*Fibonacci(k).

Original entry on oeis.org

1, 12, 24, 168, 552, 2184, 3864, 4872, 13944, 28056, 35448, 47208, 50232, 63336, 70728, 75624, 76728, 112056, 172536, 181272, 224952, 239736, 254472, 287448, 320712, 364728, 381432, 404376, 457608, 460824, 508872, 529368, 537096, 613704, 645288, 813624
Offset: 1

Views

Author

Alexander Adamchuk, May 14 2007

Keywords

Comments

A subset of A023172.
All listed terms for n>2 are divisible by a(3) = 24 = 2^3*3.
All listed terms for n>3, except a(5), are divisible by a(4) = 168 = 2^3*3*7.

Examples

			24 is a term because 24^2 = 2^6*3^2 divides 2*Fibonacci(24) = 2*46368 = 2^6*3^2*7*23.
		

Crossrefs

Cf. A000045.
Cf. A023172 (n divides Fibonacci(n)), A130164 (n^2 divides 3*Fibonacci(n)).

Programs

  • Magma
    [n: n in [1..2*10^5] | 2*Fibonacci(n) mod n^2 eq 0 ]; // Vincenzo Librandi, Sep 17 2015
  • Mathematica
    a=0; b=1; c=1; Do[a=b; b=c; c=a+b; If[Mod[2c,(n+2)^2]==0,Print[n+2]],{n,1,40000}] (* Stefan Steinerberger, May 15 2007 *)
    A130163 = {1}; a = 0; b = 12; c = 3864; Do[If[Mod[24b, n^2] == 0, A130163 = Append[A130163, n]]; a = b; b = c; c = 322b - a;, {n, 12, 1000000, 12}];
    A130163
    Length[A130163]
    (* Keith Schneider, May 27 2007 *)

Extensions

More terms from Stefan Steinerberger, May 15 2007
a(14) corrected by N. J. A. Sloane, Nov 23 2007

A130164 Numbers k such that k^2 divides 3*Fibonacci(k).

Original entry on oeis.org

1, 12, 36, 612, 684, 3852, 11628, 25308, 41004, 65484, 73188, 77292, 155268, 156636, 250308, 430236, 467172, 545148, 562428, 779076, 977364, 1244196, 1313964, 1847484, 2123028, 2185452, 2621196, 2639556, 2662812, 2707956, 2859804, 3770892, 4387428, 4679244, 4755852, 4942116, 5744916, 5795532, 6394716, 7941924, 8053308, 8270244, 9267516
Offset: 1

Views

Author

Alexander Adamchuk, May 14 2007

Keywords

Comments

A subset of A023172. All listed terms for n>1 are divisible by a(2) = 12 = 2^2*3. All listed terms for n>2 are divisible by a(3) = 36 = 2^2*3^2. - Robert G. Wilson v, May 15 2007

Examples

			36 is a term because 36^2 = 2^4*3^4 divides 3*Fibonacci(36) = 3*14930352 = 2^4*3^4*17*19*107.
		

Crossrefs

Cf. A000045.
Cf. A023172 (n divides Fibonacci(n)), A130163 (n^2 divides 2*Fibonacci(n)).

Programs

  • Magma
    [n: n in [1..2*10^5] | 3*Fibonacci(n) mod n^2 eq 0 ]; // Vincenzo Librandi, Sep 17 2015
  • Mathematica
    a=0; b=1; c=1; Do[ a=b; b=c; c=a+b; If[ Mod[3c,(n+2)^2 ] == 0, Print[n+2]],{n, 1, 30000}] (* Stefan Steinerberger, May 15 2007 *)
    a = 0; b = 0; c = 1; lst = {}; Do[ If[ Mod[3c, n^2] == 0, AppendTo[lst, n]]; a = b; b = c; c = a + b; {n, 2000000}]; lst (* Robert G. Wilson v *)
    A130164 = {1}; a = 0; b = 12; c = 3864; Do[If[Mod[36b, n^2] == 0, A130164 = Append[A130164, n]]; a = b; b = c; c = 322b - a;, {n, 12, 1000000, 12}]; A130164
    Length[A130164]
    (* Keith Schneider, May 27 2007 *)
  • PARI
    for(n=1,10^7,A=matrix(2,2,i,j,Mod(1,n*n)*(i+j<4))^n;if(lift(3*A[1,2])==0,print1(n",")))
    

Extensions

More terms from Stefan Steinerberger and Robert G. Wilson v, May 15 2007
More terms from Robert Gerbicz, Nov 28 2010

A159234 Composite numbers n such that 8*n^2-2*n-1 divides the primitive part U(n) of Fibonacci(n).

Original entry on oeis.org

27, 807, 1707, 2977, 3027, 3277, 4717, 5137, 5677, 5917, 5967, 6187, 7087, 7357, 7597, 7707, 8217, 9117, 9297, 9387, 9667, 9877, 9927, 9997, 10387, 11097, 11647, 11797, 12727, 13407, 13867, 15757, 15987, 16327, 16507, 16857, 17347, 17767, 18237, 18817, 18997
Offset: 1

Views

Author

Arkadiusz Wesolowski, Apr 06 2009

Keywords

Crossrefs

Subsequence of A159259.

Programs

  • Mathematica
    lst = {1}; Do[f = Fibonacci[a]; Do[f = f/GCD[f, lst[[d]]], {d, Most[Divisors[a]]}]; AppendTo[lst, f], {a, 2, 19000}]; Flatten[Table[If[! PrimeQ[n] && Mod[lst[[n]], 8*n^2 - 2*n - 1] == 0, n, {}], {n, 19000}]] (* Arkadiusz Wesolowski, Dec 12 2011 *)

A167745 Integer values of Fibonacci(n)/n.

Original entry on oeis.org

1, 1, 12, 1932, 3001, 414732, 100156812, 25800145932, 6922972387212, 538340717238107532, 154083590283523737612, 44652993791591388673932, 475400918060101145703001, 3858093084890921488916776332
Offset: 1

Views

Author

Keywords

Crossrefs

A023172 [From Charles R Greathouse IV, Nov 12 2009]

Programs

  • Mathematica
    f[n_]:=Fibonacci[n]/n; lst={};Do[If[IntegerQ[f[n]],AppendTo[lst,f[n]]],{n,6!}];lst
    Select[Table[Fibonacci[n]/n,{n,200}],IntegerQ] (* Harvey P. Dale, Mar 02 2025 *)
Previous Showing 21-30 of 63 results. Next