cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 89 results. Next

A279094 Smallest k such that sigma(k^n) is prime.

Original entry on oeis.org

2, 2, 4, 2, 25, 2, 59049, 4, 4, 5, 256, 2, 282475249, 243, 4, 2, 729, 2, 1174562876521148458974062689, 8, 64, 16, 25, 1331, 594823321, 16807, 38950081, 151, 361, 2, 470541197898347534873984161, 19902511, 241081, 27, 9, 61, 625, 34271896307633, 73441, 53, 1681
Offset: 1

Views

Author

Jon E. Schoenfield, Mar 11 2017

Keywords

Comments

For any number k with two or more distinct prime divisors, the sum of divisors of k^n is composite, so each term is of the form p^j where p is prime and j >= 1, i.e., all terms are prime powers (A246655). Additionally, sigma(k^n) = sigma(p^(j*n)) = (p^(j*n + 1) - 1)/(p - 1) is composite when j*n + 1 is composite, so a(n) must be of the form p^j where j*n + 1 is prime.

Examples

			a(1) = 2 because sigma(1^1) = sigma(1) = 1 (not prime), but sigma(2^1) = sigma(2) = 1 + 2 = 3 (prime).
a(3) = 4 because sigma(1^3) = 1 (not prime), sigma(2^3) = 1 + 2 + 4 + 8 = 15 (composite), sigma(3^3) = 1 + 3 + 9 + 27 = 40 (composite), but sigma(4^3) = sigma(2^6) = 1 + 2 + 4 + 8 + 16 + 32 + 64 = 127 (prime).
a(19) = 1174562876521148458974062689 = 17^22 because sigma((17^22)^19) is prime and sigma(k^19) is not prime for any smaller value of k.
		

Crossrefs

A085379 Greatest prime as sum of distinct divisors of n.

Original entry on oeis.org

3, 3, 7, 5, 11, 7, 13, 13, 17, 11, 23, 13, 23, 23, 31, 17, 37, 19, 41, 31, 23, 23, 59, 31, 41, 37, 53, 29, 71, 31, 61, 47, 53, 47, 89, 37, 59, 53, 89, 41, 89, 43, 83, 73, 71, 47, 113, 7, 83, 71, 97, 53, 113, 71, 113, 79, 89, 59, 167, 61, 31, 103, 127, 83, 139, 67
Offset: 2

Views

Author

Reinhard Zumkeller, Jun 26 2003

Keywords

Examples

			The divisors of n = 50 are {1,2,5,10,25,50}, the sums of distinct divisors that are prime: 2, 3 = 2+1, 5, 7 = 5+2, 11 = 10+1, 13 = 10+2+1, 17 = 10+5+2, 31 = 25+5+1, 37 = 25+10+2, 41 = 25+10+5+1, 43 = 25+10+5+2+1, 53 = 50+2+1, 61 = 50+10+1, 67 = 50+10+5+2 and 83 = 50+25+5+2+1. Therefore a(50) = 83 < 89 = A070801(50) and A085381(3) = 50.
		

Crossrefs

Programs

Formula

a(n) <= A070801(n) <= A000203(n).
a(A085380(n)) = A070801(A085380(n)).
a(A085381(n)) < A070801(A085381(n)).
a(A023194(n)) = A000203(A023194(n)) = A062700(n).

A195268 Numbers whose sum of odd divisors is prime.

Original entry on oeis.org

9, 18, 25, 36, 50, 72, 100, 144, 200, 288, 289, 400, 576, 578, 729, 800, 1152, 1156, 1458, 1600, 1681, 2304, 2312, 2401, 2916, 3200, 3362, 3481, 4608, 4624, 4802, 5041, 5832, 6400, 6724, 6962, 7921, 9216, 9248, 9604, 10082, 10201, 11664, 12800
Offset: 1

Views

Author

Michel Lagneau, Sep 14 2011

Keywords

Comments

Odd numbers k^2 such that sigma(k^2) is prime, times an arbitrary power of two. - Charles R Greathouse IV, Sep 14 2011

Examples

			The divisors of 2312 are { 1, 2, 4, 8, 17, 34, 68, 136, 289, 578, 1156, 2312 }, and the sum of the odd divisors 1 + 17 + 289 = 307 is prime. Hence 2312 = 2*34^2 is in the sequence.
		

Crossrefs

Subsequence of A028982.

Programs

  • Maple
    with(numtheory):for n from 1 to 20000 do:x:=divisors(n):n1:=nops(x):s:=0:for m from 1 to n1 do:if irem(x[m],2)=1 then s:=s+x[m]:fi:od:if type(s,prime)=true  then printf(`%d, `,n): else fi:od:
  • Mathematica
    Select[Range[13000], PrimeQ[DivisorSigma[1, #/2^IntegerExponent[#, 2]]] &] (* Amiram Eldar, Jul 31 2022 *)
  • PARI
    list(lim)=my(v=List(),t);forstep(k=3,sqrt(lim),2,if(isprime(sigma(t=k^2)),listput(v,t);while((t<<=1)<=lim,listput(v,t)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Sep 14 2011

A200981 Numbers n such that the sum of non-divisors of n is prime.

Original entry on oeis.org

3, 4, 10, 21, 34, 46, 58, 70, 85, 93, 118, 129, 130, 144, 178, 201, 226, 237, 262, 298, 310, 322, 324, 325, 333, 334, 346, 382, 406, 418, 430, 466, 478, 502, 513, 514, 517, 549, 598, 622, 633, 634, 657, 658, 669, 706, 730, 742, 813, 826, 837, 838
Offset: 1

Views

Author

Paolo P. Lava, Dec 13 2011

Keywords

Examples

			Non-divisors of 10 are 3, 4, 6, 7, 8, 9 and their sum is 37 that is prime.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    P:=proc(i)
    local a,n;
    for n from 1 to i do
      a:=n*(n+1)/2-sigma(n); if isprime(a) then print(n); fi;
    od;
    end:
    P(1000000);
  • Mathematica
    okQ[n_] := (n > 0) && PrimeQ[n]; Select[Range[1000], okQ[# (#+1)/2 - DivisorSigma[1, #]] &] (* T. D. Noe, Dec 15 2011 *)

A229266 Primes of the form sigma(k) + tau(k) + phi(k), where sigma(k) = A000203(k), tau(k) = A000005(k) and phi(k) = A000010(k).

Original entry on oeis.org

3, 23, 557, 1289, 2447, 3779, 9209, 10331, 11351, 18367, 14051, 34351, 42953, 67883, 95717, 96587, 134807, 164249, 193057, 310553, 253159, 321397, 383723, 548213, 657311, 499151, 630023, 516251, 732181, 713927, 927013, 932431, 784627, 906473, 855331, 1121987
Offset: 1

Views

Author

Paolo P. Lava, Sep 18 2013

Keywords

Examples

			The third term of A229265 is 200 and sigma(200) +  tau(200) + phi(200) = 465 + 12 + 80 = 557 is prime.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local a, n; for n from 1 to q do a:=sigma(n)+tau(n)+phi(n);
    if isprime(a) then print(a); fi; od; end: P(10^6);
  • Mathematica
    Select[Table[DivisorSigma[0,n]+DivisorSigma[1,n]+EulerPhi[n],{n,10^6}],PrimeQ] (* Harvey P. Dale, Oct 03 2023 *)

A232444 Numbers n such that sigma(n) and sigma(n^2) are primes.

Original entry on oeis.org

2, 4, 64, 289, 729, 15625, 7091569, 7778521, 11607649, 15912121, 43546801, 56957209, 138980521, 143688169, 171845881, 210801361, 211673401, 253541929, 256224049, 275792449, 308810329, 329386201, 357172201, 408807961, 499477801, 531625249, 769341169, 1073741824, 1260747049
Offset: 1

Views

Author

Alex Ratushnyak, Nov 24 2013

Keywords

Comments

Intersection of A023194 and A055638.
Sigma(n) = A000203(n) = sum of divisors of n.
Terms a(2)...a(29) are squares of 2, 8, 17, 27, 125, 2663, 2789, 3407, 3989, 6599, 7547, 11789, 11987, 13109, 14519, 14549, 15923, 16007, 16607, 17573, 18149, 18899, 20219, 22349, 23057, 27737, 32768, 35507.

Examples

			4 is in the sequence because both sigma(4)=7 and sigma(4^2)=31 are primes.
		

Crossrefs

Programs

  • PARI
    isok(n) = isprime(sigma(n)) && isprime(sigma(n^2)); \\ Michel Marcus, Nov 26 2013
    
  • Python
    from sympy import isprime, divisor_sigma
    A232444_list = [2]+[n for n in (d**2 for d in range(1,10**4)) if isprime(divisor_sigma(n)) and isprime(divisor_sigma(n**2))] # Chai Wah Wu, Jul 23 2016

Extensions

a(6)-a(12) from Michel Marcus, Nov 26 2013
a(13)-a(29) from Alex Ratushnyak, Nov 26 2013

A247838 Numbers k such that sigma(sigma(k)) is prime.

Original entry on oeis.org

3, 2667, 3937, 57337, 172011, 253921, 677207307, 1073602561, 732959441001382539, 750688035198863979, 1000923107604038521, 1108158528150703969
Offset: 1

Views

Author

Jaroslav Krizek, Sep 28 2014

Keywords

Comments

Numbers k such that A051027(k) is a prime p.
Prime 3 is the only prime p such that sigma(sigma(p)) is a prime q.
Conjecture: Subsequence of A046528 (numbers that are a product of distinct Mersenne primes).
Corresponding values of primes p: 7, 8191, 8191, 131071, 524287, 524287, ... (A247822). Conjecture: values of primes p is equal to Mersenne primes (A000668).
732959441001382539, 750688035198863979, 1000923107604038521, 1108158528150703969 and 196751176038481899983340171 are terms. - Jaroslav Krizek, Mar 25 2015
a(9) > 10^10. - Michel Marcus, Feb 13 2020
a(13) > 10^19. - Giovanni Resta, Feb 14 2020

Examples

			2667 is a term because sigma(sigma(2667)) = sigma(4096) = 8191 (i.e., prime).
		

Crossrefs

Programs

  • Magma
    [n: n in [1..10000000] | IsPrime(SumOfDivisors(SumOfDivisors(n)))];
    
  • Maple
    with(numtheory): A247838:=n->`if`(isprime(sigma(sigma(n))),n,NULL): seq(A247838(n), n=1..10^5); # Wesley Ivan Hurt, Oct 02 2014
  • Mathematica
    Select[Range[260000],PrimeQ[DivisorSigma[1,DivisorSigma[1,#]]]&] (* The program generates the first six terms of the sequence. *) (* Harvey P. Dale, Jan 18 2024 *)
  • PARI
    isok(n) = isprime(sigma(sigma(n))); \\ Michel Marcus, Oct 01 2014

Formula

a(n) = 2*A247821(n)-1.

Extensions

a(7)-a(8) from Michel Marcus, Oct 02 2014
a(9)-a(12) from Giovanni Resta, Feb 14 2020

A259417 Even powers of the odd primes listed in increasing order.

Original entry on oeis.org

1, 9, 25, 49, 81, 121, 169, 289, 361, 529, 625, 729, 841, 961, 1369, 1681, 1849, 2209, 2401, 2809, 3481, 3721, 4489, 5041, 5329, 6241, 6561, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12769, 14641, 15625, 16129, 17161, 18769, 19321, 22201, 22801, 24649
Offset: 1

Views

Author

Hartmut F. W. Hoft, Jun 26 2015

Keywords

Comments

Each of the following sequences, p^(q-1) with p >= 2 and q > 2 primes, except their respective first elements, powers of 2, is a subsequence:
A001248(p) = p^2, A030514(p) = p^4, A030516(p) = p^6,
A030629(p) = p^10, A030631(p) = p^12, A030635(p) = p^16,
A030637(p) = p^18, A137486(p) = p^22, A137492(p) = p^28,
A139571(p) = p^30, A139572(p) = p^36, A139573(p) = p^40,
A139574(p) = p^42, A139575(p) = p^46, A173533(p) = p^52,
A183062(p) = p^58, A183085(p) = p^60.
See also the link to the OEIS Wiki.
The sequences A053182(n)^2, A065509(n)^4, A163268(n)^6 and A240693(n)^10 are subsequences of this sequence.
The odd numbers in A023194 are a subsequence of this sequence.

Examples

			a(11) = 5^4 = 625 is followed by a(12) = 3^6 = 729 since no even power of an odd prime falls between them.
		

Programs

  • Mathematica
    a259417[bound_] := Module[{q, h, column = {}}, For[q = Prime[2], q^2 <= bound, q = NextPrime[q], For[h = 1, q^(2*h) <= bound, h++, AppendTo[column, q^(2*h)]]]; Prepend[Sort[column], 1]]
    a259417[25000] (* data *)
    With[{upto=25000},Select[Union[Flatten[Table[Prime[Range[2,Floor[ Sqrt[ upto]]]]^n,{n,0,Log[2,upto],2}]]],#<=upto&]] (* Harvey P. Dale, Nov 25 2017 *)

Formula

Sum_{n>=1} 1/a(n) = 1 + Sum_{k>=1} (P(2*k) - 1/2^(2*k)) = 1.21835996432366585110..., where P is the prime zeta function. - Amiram Eldar, Jul 10 2022

A270413 Numbers m such that sigma(m-1) is a prime.

Original entry on oeis.org

3, 5, 10, 17, 26, 65, 290, 730, 1682, 2402, 3482, 4097, 5042, 7922, 10202, 15626, 17162, 27890, 28562, 29930, 65537, 83522, 85850, 146690, 262145, 279842, 458330, 491402, 531442, 552050, 579122, 597530, 683930, 703922, 707282, 734450, 829922, 1190282, 1203410
Offset: 1

Views

Author

Jaroslav Krizek, Mar 16 2016

Keywords

Comments

Prime terms are in A249759.
Corresponding values of sigma(n-1): 3, 7, 13, 31, 31, 127, 307, 1093, ...
Conjecture: supersequence of A256438.
Conjecture: 31 is the only prime p such that p = sigma(x-1) = sigma(y-1) for distinct numbers x and y; 31 = sigma(17-1) = sigma(26-1).
Supersequence of A270414 and A270415.

Examples

			17 is in the sequence because sigma(17-1) = sigma(16) = 31 (prime).
		

Crossrefs

Programs

  • Magma
    [n: n in [2..2000000] |  IsPrime(SumOfDivisors(n-1))];
    
  • Mathematica
    Select[Range[10^6], PrimeQ@ DivisorSigma[1, # - 1] &] (* Michael De Vlieger, Mar 17 2016 *)
  • PARI
    isok(n) = isprime(sigma(n-1)); \\ Michel Marcus, Mar 17 2016

Formula

a(n) = A023194(n) + 1.

A278911 Odd numbers with prime sum of divisors.

Original entry on oeis.org

9, 25, 289, 729, 1681, 2401, 3481, 5041, 7921, 10201, 15625, 17161, 27889, 28561, 29929, 83521, 85849, 146689, 279841, 458329, 491401, 531441, 552049, 579121, 597529, 683929, 703921, 707281, 734449, 829921, 1190281, 1203409, 1352569, 1394761, 1423249, 1481089
Offset: 1

Views

Author

Jaroslav Krizek, Nov 30 2016

Keywords

Comments

Also odd numbers with prime number and sum of divisors; if the sum of divisors is prime, then the number of divisors is prime.
Values of prime sums are sorted in A247837.
Subsequence of A050150 (odd numbers with prime number of divisors).
Odd terms of A023194.
All terms are squares of the form p^e such that p is odd prime and e+1 is a prime.

Examples

			sigma(9) = 13 (prime).
		

Crossrefs

Programs

  • Magma
    [n: n in[2..10^7] | IsOdd(n) and IsPrime(SumOfDivisors(n)) and IsPrime(NumberOfDivisors(n))];
    
  • Maple
    N:= 10^7: # to get all terms <= N
    Ps:= select(isprime, [seq(i,i=3..floor(N^(1/2)),2)]):
    es:= map(`-`,select(isprime, [seq(i,i=3..floor(log[3](N))+1,2)]),1):
    Pes:= [seq(seq([p,e],p=Ps),e=es)]:
    filter:= proc(pe) local v; v:= (pe[1]^(pe[2]+1)-1)/(pe[1]-1); pe[1]^pe[2] <= N and isprime(v) end proc:
    sort(map(pe -> pe[1]^pe[2], select(filter, Pes))); # Robert Israel, Jan 22 2019
  • Mathematica
    Select[Range[1, 2*10^6, 2], PrimeQ@DivisorSigma[1, #] &] (* Michael De Vlieger, Dec 01 2016 *)
  • PARI
    isok(n) = (n % 2) && isprime(sigma(n)); \\ Michel Marcus, Dec 01 2016

Formula

a(n) = A193070(n)^2. - Michel Marcus, Dec 01 2016
Previous Showing 21-30 of 89 results. Next