cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 118 results. Next

A049481 Primes p such that p + 30 is also prime.

Original entry on oeis.org

7, 11, 13, 17, 23, 29, 31, 37, 41, 43, 53, 59, 67, 71, 73, 79, 83, 97, 101, 107, 109, 127, 137, 149, 151, 163, 167, 181, 193, 197, 199, 211, 227, 233, 239, 241, 251, 263, 277, 281, 283, 307, 317, 337, 349, 353, 359, 367, 379, 389, 401, 409, 419, 431, 433, 449
Offset: 1

Views

Author

Keywords

Comments

30 = A002110(3) is the 3rd primorial number.
p and p+30 are not necessarily consecutive primes. Initial segment of A045320 is identical, but 113 is not in this sequence because 113 + 30 = 143 is divisible by 13.

Examples

			7 is a term since it is prime and 7 + 30 = 37 is also prime.
		

Crossrefs

Programs

Formula

Assuming Polignac's conjecture and the first Hardy-Littlewood conjecture: Limit_{n->oo} n*log(a(n))/primepi(a(n)) = (16/3)*A005597 = 3.52086... . - Alain Rocchelli, Oct 29 2024

A219055 Number of ways to write n = p+q(3-(-1)^n)/2 with p>q and p, q, p-6, q+6 all prime.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 1, 1, 1, 3, 1, 1, 2, 2, 1, 3, 1, 1, 2, 2, 1, 3, 1, 0, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 2, 2, 3, 1, 1, 3, 2, 1, 4, 1, 0, 3, 3, 1, 3, 1, 1, 3, 3, 1, 2, 2, 2, 2, 2, 2, 3, 1, 3, 3, 1, 2, 6, 1, 2, 2, 1, 3, 5, 0, 1, 4, 2, 1, 4, 0, 1, 4, 3
Offset: 1

Views

Author

Zhi-Wei Sun, Nov 11 2012

Keywords

Comments

Conjecture: a(n) > 0 for all even n > 8012 and odd n > 15727.
This implies Goldbach's conjecture, Lemoine's conjecture and the conjecture that there are infinitely many primes p with p+6 also prime.
It has been verified for n up to 10^8.
Zhi-Wei Sun also made the following general conjecture: For any two multiples d_1 and d_2 of 6, all sufficiently large integers n can be written as p+q(3-(-1)^n)/2 with p>q and p, q, p-d_1, q+d_2 all prime. For example, for (d_1,d_2) = (-6,6),(-6,-6),(6,-6),(12,6),(-12,-6), it suffices to require that n is greater than 15721, 15733, 15739, 16349, 16349 respectively.

Examples

			a(18) = 2 since 18 = 5+13 = 7+11 with 5+6, 13-6, 7+6, 11-6 all prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=Sum[If[PrimeQ[Prime[k]+6]==True&&PrimeQ[n-(1+Mod[n,2])Prime[k]]==True&&PrimeQ[n-(1+Mod[n,2])Prime[k]-6]==True,1,0],{k,1,PrimePi[(n-1)/(2+Mod[n,2])]}]
    Do[Print[n," ",a[n]],{n,1,100000}]
  • PARI
    A219055(n)={my(c=1+bittest(n, 0), s=0); forprime(q=1, (n-1)\(c+1), isprime(q+6) && isprime(n-c*q) && isprime(n-c*q-6) && s++); s} \\ M. F. Hasler, Nov 11 2012

A230223 Primes p such that 3*p-4, 3*p-10, and 3*p-14 are all prime.

Original entry on oeis.org

7, 11, 17, 19, 31, 37, 47, 59, 79, 107, 131, 151, 157, 229, 317, 367, 409, 431, 479, 499, 521, 541, 739, 787, 1031, 1181, 1307, 1381, 1487, 1601, 1697, 1747, 1951, 2551, 2749, 2767, 2917, 3251, 3391, 3449, 3581, 3931, 4217, 4349, 4447, 4567, 4639, 4721, 4909, 4967
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 12 2013

Keywords

Comments

Conjecture: Any even number greater than 35 can be written as a sum of four terms of this sequence.
Primes in the sequence should be sparser than twin primes although this has not been proved.

Examples

			a(1) = 7 since 3*7-4 = 17, 3*7-10 = 11 and 3*7-14 = 7 are prime.
		

Crossrefs

Programs

  • Mathematica
    RQ[n_]:=n>5&&PrimeQ[3n-4]&&PrimeQ[3n-10]&&PrimeQ[3n-14]
    m=0
    Do[If[RQ[Prime[n]],m=m+1;Print[m," ",Prime[n]]],{n,1,1000}]
    Select[Prime[Range[700]],AllTrue[3#-{4,10,14},PrimeQ]&] (* Harvey P. Dale, Sep 29 2023 *)
  • PARI
    is(p)=isprime(p) && isprime(3*p-4) && isprime(3*p-10) && isprime(3*p-14) \\ Charles R Greathouse IV, Oct 12 2013

A054905 Smallest composite x such that sigma(x) + 2n = sigma(x + 2n).

Original entry on oeis.org

434, 305635357, 104, 27, 195556, 65, 12, 39, 20, 56, 916, 80, 212282, 57, 44, 106645, 52, 125
Offset: 1

Views

Author

Labos Elemer May 23 2000

Keywords

Comments

a(19) > 4293000000, if it exists. - Jud McCranie, May 25 2000
a(19) > 10^11, if it exists. - Charles R Greathouse IV, Oct 26 2022

Examples

			a(5) corresponds to n=3+2=5, d=2n=10 and the smallest composite integer is 195556. The next solution is 1152136225.
		

Crossrefs

Programs

  • PARI
    a(n)=forcomposite(x=3,10^66,if(sigma(x)+2*n==sigma(x+2*n),return(x)));
    for(n=1,66,print1(a(n),", ")); \\ Joerg Arndt, Nov 15 2014
    
  • PARI
    a19(lim,startAt=39)=startAt=ceil(startAt); my(v=vectorsmall(38),i=(startAt-1)%38); forfactored(n=startAt,lim\1+38, my(t=sigma(n)); if(i++>38,i=1); if(t==v[i]+38, return(n[1]-38)); v[i]=if(vecsum(n[2][,2])>1,t,0)) \\ Charles R Greathouse IV, Oct 25 2022

Extensions

Description corrected by Jud McCranie, May 25 2000

A046118 Smallest member of a sexy prime triple: value of p such that p, p+6 and p+12 are all prime, but p+18 is not (although p-6 might be).

Original entry on oeis.org

7, 17, 31, 47, 67, 97, 101, 151, 167, 227, 257, 271, 347, 367, 557, 587, 607, 647, 727, 941, 971, 1097, 1117, 1181, 1217, 1277, 1291, 1361, 1427, 1447, 1487, 1607, 1657, 1747, 1777, 1867, 1901, 1987, 2131, 2281, 2377, 2411, 2677, 2687, 2707, 2791, 2897, 2957
Offset: 1

Views

Author

Keywords

Comments

p-6 will be prime if the prime triple contains the last 3 primes of a sexy prime quadruple.
If a sexy prime triple happens to include the last 3 members of a sexy prime quadruple, this sequence will contain the sexy prime triple's smallest member; e.g., a(4)=47 is the smallest member of the sexy prime triple (47, 53, 59), but is also the second member of the sexy prime quadruple (41, 47, 53, 59). - Daniel Forgues, Aug 05 2009

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(5000) | not IsPrime(p+18) and IsPrime(p+6) and IsPrime(p+12)]; // Vincenzo Librandi, Sep 07 2017
  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[p+6]&&PrimeQ[p+12]&&!PrimeQ[p+18], AppendTo[lst, p]], {n, 7!}];lst (* Vladimir Joseph Stephan Orlovsky, Aug 29 2008 *)
    Select[Prime[Range[500]],AllTrue[#+{6,12},PrimeQ]&&CompositeQ[#+18]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 11 2019 *)
  • PARI
    lista(nn) = forprime(p=3, nn, if (isprime(p+6) && isprime(p+12) && !isprime(p+18), print1(p, ", "));); \\ Michel Marcus, Jan 06 2015
    

Extensions

Definition edited by Daniel Forgues, Aug 12 2009
More terms from Eric M. Schmidt, Sep 07 2017

A156104 Primes p such that p+36 is also prime.

Original entry on oeis.org

5, 7, 11, 17, 23, 31, 37, 43, 47, 53, 61, 67, 71, 73, 101, 103, 113, 127, 131, 137, 157, 163, 191, 193, 197, 227, 233, 241, 257, 271, 277, 281, 311, 313, 317, 331, 337, 347, 353, 373, 383, 397, 421, 431, 443, 463, 467, 487, 521, 541, 557, 563, 571, 577, 607
Offset: 1

Views

Author

Vincenzo Librandi, Feb 08 2009

Keywords

Crossrefs

Cf. A156112.
Cf. sequences of the type p+n are primes: A001359 (n=2), A023200 (n=4), A023201 (n=6), A023202 (n=8), A023203 (n=10), A046133 (n=12), A153417 (n=14), A049488 (n=16), A153418 (n=18), A153419 (n=20), A242476 (n=22), A033560 (n=24), A252089 (n=26), A252090 (n=28), A049481 (n=30), A049489 (n=32), A252091 (n=34), this sequence (n=36); A062284 (n=50), A049490 (n=64), A156105 (n=72), A156107 (n=144).

Programs

  • Magma
    [p: p in PrimesUpTo(1000) | IsPrime(p + 36)]; // Vincenzo Librandi, Oct 31 2012
  • Mathematica
    Select[Prime[Range[1000]], PrimeQ[(#+ 36)]&] (* Vincenzo Librandi, Oct 31 2012 *)

A199920 Number of ways to write n = p+k with p, p+6, 6k-1 and 6k+1 all prime.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 2, 1, 2, 0, 3, 1, 3, 2, 2, 2, 3, 2, 2, 1, 2, 3, 3, 3, 1, 1, 3, 2, 4, 1, 2, 2, 3, 3, 3, 2, 4, 2, 4, 3, 3, 5, 3, 3, 3, 3, 4, 5, 3, 3, 3, 3, 5, 4, 4, 3, 4, 3, 3, 2, 3, 6, 5, 4, 2, 1, 3, 5, 5, 5, 2, 2, 3, 5, 3, 5, 4, 5, 2, 3, 2, 5, 5, 6, 4, 2, 3, 3, 4, 3, 3, 5, 4, 3, 1, 1, 4, 5, 7
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 22 2012

Keywords

Comments

Conjecture: a(n)>0 for all n>11.
This implies that there are infinitely many twin primes and also infinitely many sexy primes. It has been verified for n up to 10^9. See also A199800 for a weaker version of this conjecture.
Zhi-Wei Sun also conjectured that any integer n>6 not equal to 319 can be written as p+k with p, p+6, 3k-2+(n mod 2) and 3k+2-(n mod 2) all prime.

Examples

			a(21)=1 since 21=11+10 with 11, 11+6, 6*10-1 and 6*10+1 all prime.
		

Crossrefs

Programs

A111192 Product of the n-th sexy prime pair.

Original entry on oeis.org

55, 91, 187, 247, 391, 667, 1147, 1591, 1927, 2491, 3127, 4087, 4891, 5767, 7387, 9991, 10807, 11227, 12091, 17947, 23707, 25591, 28891, 30967, 37627, 38407, 51067, 52891, 55687, 64507, 67591, 70747, 75067, 78391, 96091, 98587, 111547, 122491, 126727, 136891
Offset: 1

Views

Author

Shawn M Moore (sartak(AT)gmail.com), Oct 23 2005

Keywords

Comments

Semiprime of the form 4*m^2-9 = (2*m-3)*(2*m+3). - Vincenzo Librandi, Jan 26 2016

Examples

			a(2)=91 because the second sexy prime pair is (7, 13) and 7*13=91.
		

Crossrefs

Cf. A037074, A143206, A195118; intersection of A143205 and A001358.

Programs

  • Haskell
    a111192 n = a111192_list !! (n-1)
    a111192_list = f a000040_list where
       f (p:ps@(q:r:_)) | q - p == 6 = (p*q) : f ps
                        | r - p == 6 = (p*r) : f ps
                        | otherwise  = f ps
    -- Reinhard Zumkeller, Sep 13 2011
    
  • Magma
    IsSemiprime:=func; [s: n in [1..300] | IsSemiprime(s) where s is 4*n^2-9]; // Vincenzo Librandi, Jan 26 2016
  • Mathematica
    #(#+6)&/@Select[Prime[Range[100]], PrimeQ[#+6]&] (* Harvey P. Dale, Dec 17 2010 *)
    (* For checking large numbers, the following code is better. For instance, we could use the fQ function to determine that 229031718473564142083 is not in this sequence. *) fQ[n_] := Block[{fi = FactorInteger[n]}, Last@# & /@ fi == {1, 1} && Differences[ First@# & /@ fi] == {6}]; Select[ Range[125000], fQ] (* Robert G. Wilson v, Feb 08 2012 *)
    Select[Table[4 n^2 - 9, {n, 300}], PrimeOmega[#] == 2 &] (* Vincenzo Librandi, Jan 26 2016 *)

Formula

a(n) = A023201(n) * A046117(n). - Reinhard Zumkeller, Sep 13 2011

A046138 Primes p such that p+6 and p+8 are also primes.

Original entry on oeis.org

5, 11, 23, 53, 101, 131, 173, 191, 233, 263, 563, 593, 653, 821, 1013, 1223, 1283, 1481, 1601, 1613, 1871, 2081, 2333, 2543, 2963, 3251, 3323, 3461, 3533, 3761, 3911, 3923, 4013, 4211, 4253, 4643, 4793, 5003, 5273, 5471, 5651, 5843, 5861, 6263, 6353, 6563
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(10^4)| IsPrime(p+6) and IsPrime(p+8)]; // Vincenzo Librandi, Jul 26 2015
    
  • Maple
    for a from 3 by 2 to 10000 do
    if `and`(isprime(a), isprime(a+6), isprime(a+8)) then print(a); end if;
    end do; # Matt C. Anderson, Jul 24 2015
  • Mathematica
    Select[Range@ 6000, AllTrue[{#, # + 6, # + 8}, PrimeQ] &] (* Michael De Vlieger, Jul 24 2015, Version 10 *)
    Select[Prime[Range[1000]],AllTrue[#+{6,8},PrimeQ]&] (* Harvey P. Dale, Jun 05 2024 *)
  • Perl
    use ntheory ":all"; say for sieve_prime_cluster(0,1e5, 6,8); # Dana Jacobsen, Oct 17 2017

Formula

A023201 INTERSECT A023202. - R. J. Mathar, Jan 23 2009

A103206 Concatenations of pairs of primes that differ by 6.

Original entry on oeis.org

511, 713, 1117, 1319, 1723, 2329, 3137, 3743, 4147, 4753, 5359, 6167, 6773, 7379, 8389, 97103, 101107, 103109, 107113, 131137, 151157, 157163, 167173, 173179, 191197, 193199, 223229
Offset: 0

Views

Author

Jonathan Vos Post, Mar 19 2005

Keywords

Comments

Prime in this sequence: a(3) = 1117, a(4) = 1319, a(5) = 1723, a(7) = 3137, a(15) = 8389, a(16) = 97103, a(17) = 101107, a(21) = 151157, a(22) = 157163, a(23) = 167173, a(27) = 223229. Semiprimes in this sequence: a(1) = 511 = 7 x 73, a(2) = 713 = 23 * 31, a(6) = 2329 = 17 * 137, a(8) = 3743 = 19 * 197, a(11) = 5359 = 23 * 233, a(12) = 6167 = 7 * 881, a(13) = 6773 = 13 * 521, a(14) = 7379 = 47 x 157, a(18) = 103109 = 23 * 4483, a(20) = 131137 = 71 * 1847, a(26) = 193199 = 43 * 4493, ... Note that a(9) = 4147 = 11 * 13 * 29 and a(19) = 107113 = 43 * 47 * 53 are the products of three primes with the same number of digits.

Crossrefs

Programs

  • Mathematica
    FromDigits[Flatten[IntegerDigits/@{#,#+6}]]&/@Select[Prime[Range[50]], PrimeQ[#+6]&] (* Harvey P. Dale, Jun 24 2015 *)

Formula

a(n) = A023201(n) concatenated with A023201(n)+6.
Previous Showing 11-20 of 118 results. Next