A049481 Primes p such that p + 30 is also prime.
7, 11, 13, 17, 23, 29, 31, 37, 41, 43, 53, 59, 67, 71, 73, 79, 83, 97, 101, 107, 109, 127, 137, 149, 151, 163, 167, 181, 193, 197, 199, 211, 227, 233, 239, 241, 251, 263, 277, 281, 283, 307, 317, 337, 349, 353, 359, 367, 379, 389, 401, 409, 419, 431, 433, 449
Offset: 1
Keywords
Examples
7 is a term since it is prime and 7 + 30 = 37 is also prime.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..10000
- Hugo Pfoertner, Observed ratio n*log(a(n))/pi(a(n)) for n=10^7..5.6*10^9 with a conjectured extrapolation for large n (2024).
Crossrefs
Programs
-
Mathematica
lst={};Do[p=Prime[n];If[PrimeQ[p+30],AppendTo[lst,p]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 04 2009 *) Select[Prime[Range[100]],PrimeQ[#+30]&] (* Harvey P. Dale, Apr 28 2012 *)
-
PARI
isok(p) = isprime(p) && isprime(p + 30); \\ Amiram Eldar, Mar 15 2025
Formula
Assuming Polignac's conjecture and the first Hardy-Littlewood conjecture: Limit_{n->oo} n*log(a(n))/primepi(a(n)) = (16/3)*A005597 = 3.52086... . - Alain Rocchelli, Oct 29 2024
Comments