cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 36 results. Next

A074479 Largest prime factor of 5^n - 1.

Original entry on oeis.org

2, 3, 31, 13, 71, 31, 19531, 313, 829, 521, 12207031, 601, 305175781, 19531, 1741, 11489, 466344409, 5167, 3981071, 9161, 519499, 12207031, 332207361361, 390001, 9384251, 305175781, 31051, 234750601, 22125996444329, 7621
Offset: 1

Views

Author

Rick L. Shepherd, Aug 23 2002

Keywords

Examples

			5^9 - 1 = 1953124 = (2^2)*19*31*829, so a(9) = 829.
		

Crossrefs

Cf. A074478 (largest prime factor of 5^n + 1), A074477 (largest prime factor of 3^n - 1), A074249 (largest prime factor of 7^n - 1).
Cf. similar sequences listed in A274906.

Programs

  • Magma
    [Maximum(PrimeDivisors(5^n-1)): n in [1..45]]; // Vincenzo Librandi, Jul 13 2016
  • Mathematica
    Table[FactorInteger[5^n - 1] [[-1, 1]], {n, 30}] (* Vincenzo Librandi, Aug 23 2013 *)
  • PARI
    for(n=1,32, v=factor(5^n-1); print1(v[matsize(v)[1],1],","))
    

Formula

a(n) = A006530(A024049(n)). - Vincenzo Librandi, Jul 13 2016

Extensions

Terms to a(100) in b-file from Vincenzo Librandi, Aug 23 2013
a(101)-a(448) in b-file from Amiram Eldar, Feb 01 2020
a(449)-a(502) in b-file from Max Alekseyev, Apr 25 2022

A366613 Sum of the divisors of 5^n-1.

Original entry on oeis.org

7, 60, 224, 1736, 6048, 49920, 136724, 1107792, 3718400, 27060480, 85449224, 869499904, 2136230474, 15820920000, 61359427584, 461863805760, 1338408456700, 13177159680000, 33558717136896, 301282248701952, 863701914880000, 6313641012910080, 20863951122979048
Offset: 1

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Examples

			a(3)=224 because 5^3-1 has divisors {1, 2, 4, 31, 62, 124}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[sigma](5^n-1):
    seq(a(n), n=1..100);
  • Mathematica
    DivisorSigma[1, 5^Range[30]-1]

Formula

a(n) = sigma(5^n-1) = A000203(A024049(n)).

A024140 a(n) = 12^n - 1.

Original entry on oeis.org

0, 11, 143, 1727, 20735, 248831, 2985983, 35831807, 429981695, 5159780351, 61917364223, 743008370687, 8916100448255, 106993205379071, 1283918464548863, 15407021574586367, 184884258895036415
Offset: 0

Views

Author

Keywords

Comments

In base 12 these are 0, B, BB, BBB, ... . - David Rabahy, Dec 12 2016

Crossrefs

Cf. Similar sequences of the type k^n-1: A000004 (k=1), A000225 (k=2), A024023 (k=3), A024036 (k=4), A024049 (k=5), A024062 (k=6), A024075 (k=7), A024088 (k=8), A024101 (k=9), A002283 (k=10), A024127 (k=11), this sequence (k=12).

Programs

  • Mathematica
    12^Range[0,20]-1 (* or *) LinearRecurrence[{13,-12},{0,11},20] (* Harvey P. Dale, Feb 01 2019 *)

Formula

From Mohammad K. Azarian, Jan 14 2009: (Start)
G.f.: 1/(1-12*x) - 1/(1-x).
E.g.f.: exp(12*x) - exp(x). (End)
a(n) = 12*a(n-1) + 11 for n>0, a(0)=0. - Vincenzo Librandi, Nov 18 2010
a(n) = Sum_{i=1..n} 11^i*binomial(n,n-i) for n>0, a(0)=0. - Bruno Berselli, Nov 11 2015
From Elmo R. Oliveira, Dec 15 2023: (Start)
a(n) = 13*a(n-1) - 12*a(n-2) for n>1.
a(n) = A001021(n)-1 = A178248(n)-2.
a(n) = 11*(A016125(n) - 1)/12. (End)

A366612 Number of divisors of 5^n-1.

Original entry on oeis.org

3, 8, 6, 20, 12, 48, 6, 48, 24, 64, 6, 240, 6, 64, 96, 224, 12, 512, 24, 640, 48, 128, 12, 1152, 192, 64, 384, 320, 24, 6144, 12, 1024, 48, 128, 384, 10240, 24, 512, 48, 6144, 12, 18432, 12, 1280, 3072, 128, 6, 10752, 12, 4096, 192, 960, 24, 81920, 576, 1536
Offset: 1

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Examples

			a(3)=6 because 5^3-1 has divisors {1, 2, 4, 31, 62, 124}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](5^n-1):
    seq(a(n), n=1..100);
  • Mathematica
    DivisorSigma[0, 5^Range[100]-1]
  • PARI
    a(n) = numdiv(5^n-1);

Formula

a(n) = sigma0(5^n-1) = A000005(A024049(n)).

A366611 Number of distinct prime divisors of 5^n - 1.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 2, 4, 4, 5, 2, 6, 2, 5, 6, 6, 3, 7, 4, 8, 5, 6, 3, 8, 7, 5, 8, 7, 4, 11, 3, 8, 5, 6, 8, 11, 4, 8, 5, 11, 3, 12, 3, 9, 11, 6, 2, 11, 3, 11, 7, 8, 4, 14, 8, 9, 6, 7, 3, 17, 4, 7, 10, 11, 7, 12, 6, 11, 8, 14, 3, 16, 4, 8, 15, 11, 6, 11, 4, 15
Offset: 1

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Crossrefs

Programs

  • PARI
    for(n = 1, 100, print1(omega(5^n - 1), ", "))

Formula

a(n) = omega(5^n-1) = A001221(A024049(n)).

A125831 a(n) = (5^n - 1)/2.

Original entry on oeis.org

0, 2, 12, 62, 312, 1562, 7812, 39062, 195312, 976562, 4882812, 24414062, 122070312, 610351562, 3051757812, 15258789062, 76293945312, 381469726562, 1907348632812, 9536743164062, 47683715820312, 238418579101562, 1192092895507812, 5960464477539062, 29802322387695312
Offset: 0

Views

Author

Zerinvary Lajos, Feb 03 2007

Keywords

Comments

Number of compositions of odd numbers into n parts < 5. - Adi Dani, Jun 11 2011
Numbers whose base 5 representation is 22222...2 (n times).

Examples

			a(2)=12: there are 12 compositions of odd numbers into 2 parts < 5:
1: (0,1),(1,0);
3: (0,3),(3,0),(1,2),(2,1);
5: (1,4),(4,1),(2,3),(3,2);
7: (3,4),(4,3). - _Adi Dani_, Jun 11 2011
		

References

  • S. J. Cyvin, B. N. Cyvin, and J. Brunvoll. Enumeration of tree-like octagonal systems: catapolyoctagons, ACH Models in Chem. 134 (1997), pp. 55-70, eqs. (6) and (7) on p. 58.

Crossrefs

Cf. A003463, A024049, A121177 (same with different offset).

Programs

Formula

a(n) = 5*a(n-1) + 2 for n > 0, a(0)=0. - Vincenzo Librandi, Sep 30 2010
From Colin Barker, May 16 2013: (Start)
a(n) = 6*a(n-1) - 5*a(n-2).
G.f.: 2*x/((1-x)*(1-5*x)). (End)
a(n) = 2*A003463(n). - Joerg Arndt, Aug 03 2019
From Elmo R. Oliveira, Dec 10 2023: (Start)
a(n) = A024049(n)/2.
E.g.f.: (1/2)*(exp(5*x) - exp(x)). (End)

Extensions

Offset corrected by N. J. A. Sloane, Oct 02 2010
Major edit by Joerg Arndt, Jun 11 2011

A249433 Integers n such that n! does not divide the product of elements on row n of Pascal's triangle.

Original entry on oeis.org

3, 5, 7, 8, 9, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 25, 26, 27, 29, 31, 32, 33, 34, 37, 38, 41, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 59, 61, 63, 64, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 80, 81, 84, 85, 86, 87, 90, 91, 92, 93, 94, 95, 97, 98, 99, 101, 103, 105, 109, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 127, 128
Offset: 1

Views

Author

Antti Karttunen, Nov 02 2014

Keywords

Comments

Integers n such that A249151(n) < n.
Equally: Integers n such that A249431(n) is negative.

Examples

			See the examples at A249434.
		

Crossrefs

Complement: A249434.
Subsequences: A000225, A024023, A024049, etc., (after their two initial terms, i.e. A249435 without its initial zero is also a subsequence), A249424, A249436.

A258807 a(n) = n^5 - 1.

Original entry on oeis.org

0, 31, 242, 1023, 3124, 7775, 16806, 32767, 59048, 99999, 161050, 248831, 371292, 537823, 759374, 1048575, 1419856, 1889567, 2476098, 3199999, 4084100, 5153631, 6436342, 7962623, 9765624, 11881375, 14348906, 17210367, 20511148, 24299999, 28629150, 33554431
Offset: 1

Views

Author

Vincenzo Librandi, Jun 11 2015

Keywords

Crossrefs

Subsequence of A181124.
Sequences of the type n^k-1: A132411 (k=2), A068601 (k=3), A123865 (k=4), this sequence (k=5), A123866 (k=6), A258808 (k=7), A258809 (k=8), A258810 (k=9), A123867 (k=10), A258812 (k=11), A123868 (k=12).

Programs

  • GAP
    List([1..35],n->n^5-1); # Muniru A Asiru, Oct 28 2018
    
  • Magma
    [n^5-1: n in [1..50]];
    
  • Magma
    I:=[0,31,242,1023, 3124,7775]; [n le 6 select I[n] else 6*Self(n-1)-15*Self(n-2)+20*Self(n-3)-15*Self(n-4)+ 6*Self(n-5)-Self(n-6): n in [1..50]];
    
  • Maple
    seq(n^5-1,n=1..35); # Muniru A Asiru, Oct 28 2018
  • Mathematica
    Table[n^5 - 1, {n, 1, 50}] (* or *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 31, 242, 1023, 3124, 7775}, 50]
  • PARI
    a(n)=n^5-1 \\ Charles R Greathouse IV, Jun 11 2015
    
  • Python
    for n in range(1, 50): print(n**5 - 1, end=', ') # Stefano Spezia, Oct 28 2018
  • Sage
    [n^5-1 for n in (1..50)] # Bruno Berselli, Jun 11 2015
    

Formula

G.f.: x^2*(31 + 56*x + 36*x^2 - 4*x^3 + x^4)/(1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
a(n) = -A024003(n). - Bruno Berselli, Jun 11 2015
Sum_{n>=2} 1/a(n) = Sum_{n>=1} (zeta(5*n) - 1) = 0.0379539032... - Amiram Eldar, Nov 06 2020

A024003 a(n) = 1 - n^5.

Original entry on oeis.org

1, 0, -31, -242, -1023, -3124, -7775, -16806, -32767, -59048, -99999, -161050, -248831, -371292, -537823, -759374, -1048575, -1419856, -1889567, -2476098, -3199999, -4084100, -5153631, -6436342, -7962623, -9765624, -11881375, -14348906, -17210367, -20511148
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A024049.

Programs

  • Magma
    [1-n^5: n in [0..50]]; // Vincenzo Librandi, Apr 29 2011
    
  • Mathematica
    1-Range[0,50]^5 (* Vladimir Joseph Stephan Orlovsky, Feb 20 2011 *)
    CoefficientList[Series[(1-6*x-16*x^2-76*x^3-21*x^4-2*x^5)/(1-x)^6, {x, 0, 50}], x] (* G. C. Greubel, May 11 2017 *)
    LinearRecurrence[{6,-15,20,-15,6,-1},{1,0,-31,-242,-1023,-3124},30] (* Harvey P. Dale, May 18 2019 *)
  • PARI
    x='x+O('x^50); Vec((1-6*x-16*x^2-76*x^3-21*x^4-2*x^5)/(1-x)^6) \\ G. C. Greubel, May 11 2017

Formula

From G. C. Greubel, May 11 2017: (Start)
G.f.: (1 - 6*x - 16*x^2 - 76*x^3 - 21*x^4 - 2*x^5)/(1 - x)^6.
E.g.f.: (1 - x - 15*x^2 - 25*x^3 - 10*x^4 - x^5)*exp(x). (End)

Extensions

More terms from Harvey P. Dale, Feb 22 2016

A270390 Greatest common divisor of 2^n-1 and 5^n-1.

Original entry on oeis.org

1, 3, 1, 3, 1, 63, 1, 3, 1, 33, 1, 819, 1, 3, 31, 51, 1, 3591, 1, 1353, 1, 69, 1, 819, 1, 3, 1, 87, 1, 21483, 1, 51, 1, 3, 71, 1727271, 1, 3, 79, 1353, 1, 2408301, 1, 6141, 31, 141, 1, 13923, 1, 8283, 1, 159, 1, 10773, 1, 87, 1, 177, 1, 698476779, 1, 3, 1, 32691, 1
Offset: 1

Views

Author

Tom Edgar, Mar 16 2016

Keywords

Comments

Ailon and Rudnick conjecture that a(n) = 1 infinitely often.

Examples

			For n=3, 2^3-1 = 7 and 5^3-1 = 124, thus a(3) = gcd(7,124) = 1.
		

Crossrefs

Programs

  • Maple
    seq(igcd(2^n-1, 5^n-1), n=1..100);
  • Mathematica
    Table[GCD[2^n - 1, 5^n - 1], {n, 100}]
  • PARI
    vector(100,n,gcd(2^n-1,5^n-1))
  • Sage
    [gcd(2^n-1,5^n-1) for n in [1..100]]
    

Formula

a(n) = gcd(2^n - 1, 5^n - 1).
a(n) = gcd(A000225(n), A024049(n)).
Previous Showing 11-20 of 36 results. Next