cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 66 results. Next

A138635 a(n) =3*a(n-3)-3*a(n-6)+2*a(n-9).

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 2, 1, 3, 3, 2, 6, 5, 5, 11, 10, 11, 21, 21, 22, 42, 43, 43, 85, 86, 85, 171, 171, 170, 342, 341, 341, 683, 682, 683, 1365, 1365, 1366, 2730, 2731, 2731, 5461, 5462, 5461, 10923, 10923, 10922, 21846, 21845, 21845, 43691, 43690, 43691, 87381
Offset: 0

Views

Author

Paul Curtz, May 14 2008

Keywords

Comments

As the recurrence shows, these are three interleaved sequences which obey recurrences b(n)=3*b(n-1)-3*b(n-2)+2*b(n-3), indicating that the b(n) equal their third differences.
These three sequences are A024495, A024494 (or A131708) and A024493 (or A130781).
Their starting "vectors" b(0,1,2) are 0,0,1 and 0,1,2 and 1,1,1, respectively, therefore linearly independent, such that other sequences with the same recursion as b(n) can be written as linear combinations of these.

Crossrefs

Formula

a(18*n) = 21*A133853(n).
G.f.: -x^2*(1+x^2-2*x^3+x^4-x^5+x^6)/((2*x^3-1)*(x^6-x^3+1)). - R. J. Mathar, May 17 2009

Extensions

Edited by R. J. Mathar, May 17 2009

A157823 a(n) = A156591(n) + A156591(n+1).

Original entry on oeis.org

-5, -1, -2, -4, -8, -16, -32, -64, -128, -256, -512, -1024, -2048, -4096, -8192, -16384, -32768, -65536, -131072, -262144, -524288, -1048576, -2097152, -4194304, -8388608, -16777216, -33554432, -67108864, -134217728, -268435456, -536870912, -1073741824
Offset: 0

Views

Author

Paul Curtz, Mar 07 2009

Keywords

Comments

A156591 = 2,-7,6,-8,4,-12,... a(n) is companion to A154589 = 4,-1,-2,-4,-8,.For this kind ,companion of sequence b(n) is first differences a(n), second differences being b(n). Well known case: A131577 and A011782. a(n)+b(n)=A000079 or -A000079. a(n)=A154570(n+2)-A154570(n) ,A154570 = 1,3,-4,2,-6,-2,-14,. See sequence(s) identical to its p-th differences (A130785,A130781,A024495,A000749,A138112(linked to Fibonacci),A139761).

Programs

  • PARI
    Vec(-(9*x-5)/(2*x-1) + O(x^100)) \\ Colin Barker, Feb 03 2015

Formula

a(n) = 2*a(n-1) for n>1. G.f.: -(9*x-5) / (2*x-1). - Colin Barker, Feb 03 2015

Extensions

Edited by Charles R Greathouse IV, Oct 11 2009

A173432 NW-SE diagonal sums of Riordan array A112468.

Original entry on oeis.org

1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 0
Offset: 1

Views

Author

Mark Dols, Feb 18 2010

Keywords

Comments

Matches Fibonacci-sequence, such that F(n) + a(n) and F(n) - a(n) = always even.
Periodic sequence with period: [1,1,2,1,1,0]. - Philippe Deléham, Oct 11 2011

Crossrefs

Programs

  • Magma
    [2*Ceiling(n/6)-2*Floor(n/6)+Floor(n/3)-Ceiling(n/3) : n in [1..100]]; // Wesley Ivan Hurt, Sep 27 2014
  • Maple
    A173432:=n->2*ceil(n/6)-2*floor(n/6)+floor(n/3)-ceil(n/3): seq(A173432(n), n=1..100); # Wesley Ivan Hurt, Sep 27 2014
  • Mathematica
    Table[2 Ceiling[n/6] - 2 Floor[n/6] + Floor[n/3] - Ceiling[n/3], {n, 50}] (* Wesley Ivan Hurt, Sep 27 2014 *)
  • PARI
    Vec(-x*(x^2+1) / ((x-1)*(x+1)*(x^2-x+1)) + O(x^100)) \\ Colin Barker, Sep 26 2014
    

Formula

a(n) = 1 + A131531(n) with inverse binomial transform: 1, 0, 1, -3, 6, -11, 21, .., a signed variant of A024495. - R. J. Mathar, Mar 04 2010
a(2n+1) = a(2n)-a(2n-1)+2, a(2n) = a(2n-1)-a(2n-2) with a(1) = a(2)=1. - Philippe Deléham, Oct 11 2011
a(n) = a(n-1)-a(n-3)+a(n-4). - Colin Barker, Sep 26 2014
G.f.: -x*(x^2+1) / ((x-1)*(x+1)*(x^2-x+1)). - Colin Barker, Sep 26 2014
a(n) = 2*ceiling(n/6)-2*floor(n/6)+floor(n/3)-ceiling(n/3). - Wesley Ivan Hurt, Sep 27 2014
a(n) = A001045(n) - A111927(n). - Paul Curtz, Dec 16 2020

Extensions

Corrected and extended by Philippe Deléham, Oct 11 2011

A242563 a(n) = 2*a(n-1) - a(n-3) + 2*a(n-4), a(0)=a(1)=0, a(2)=2, a(3)=3.

Original entry on oeis.org

0, 0, 2, 3, 6, 10, 21, 42, 86, 171, 342, 682, 1365, 2730, 5462, 10923, 21846, 43690, 87381, 174762, 349526, 699051, 1398102, 2796202, 5592405, 11184810, 22369622, 44739243, 89478486, 178956970, 357913941, 715827882, 1431655766, 2863311531, 5726623062, 11453246122
Offset: 0

Views

Author

Paul Curtz, May 17 2014

Keywords

Comments

Generally, a(n) is an autosequence if its inverse binomial transform is (-1)^n*a(n). It is of the first kind if the main diagonal is 0's and the first two upper diagonals (just above the main one) are the same. It is of the second kind if the main diagonal is equal to the first upper diagonal multiplied by 2. If the first upper diagonal is an autosequence, the sequence is a super autosequence. Example: A113405. The first upper diagonal is A001045(n). Another super autosequence: 0, 0, 0 followed by A059633(n). The first upper diagonal is A000045(n).
Difference table of a(n):
0, 0, 2, 3, 6, 10, 21, 42, ...
0, 2, 1, 3, 4, 11, 21, 44, ...
2, -1, 2, 1, 7, 10, 23, 41, ...
-3, 3, -1, 6, 3, 13, 18, 45, ... .
This is an autosequence of the second kind. The main diagonal is 2*A001045(n) = A078008(n). More precisely it is a super autosequence, companion of A113405(n).
a(n+1) mod 10 = period 12: repeat 0, 2, 3, 6, 0, 1, 2, 6, 1, 2, 2, 5.
It is shifted A081374(n+1) mod 10 =
period 12: repeat 1, 2, 2, 5, 0, 2, 3, 6, 0, 1, 2, 6.
a(n) mod 9 = period 18:
repeat 0, 0, 2, 3, 6, 1, 3, 6, 5, 0, 0, 7, 6, 3, 8, 6, 3, 4 = c(n).
c(n) + c(n+9) = 0, 0, 9, 9, 9, 9, 9, 9, 9.

Examples

			G.f. = 2*x^2 + 3*x^3 + 6*x^4 + 10*x^5 + 21*x^6 + 42*x^7 + 86*x^8 + ...
		

Crossrefs

Cf. A000032, 1/(n+1), A164555/A027642 (all autosequences of 2nd kind). A007283, A175805.

Programs

  • Mathematica
    a[n_] := (m = Mod[n, 6]; 1/3*(2^n + (-1)^n + 1/120*(m-6)*(m+1)*(m^3-29*m+40))); Table[a[n], {n, 0, 35}] (* Jean-François Alcover, May 19 2014, a non-recursive formula, after Mathematica's RSolve *)
    LinearRecurrence[{2, 0, -1, 2}, {0, 0, 2, 3},50] (* G. C. Greubel, Feb 21 2017 *)
  • PARI
    concat([0,0], Vec(x^2*(x-2)/((x+1)*(2*x-1)*(x^2-x+1)) + O(x^100))) \\ Colin Barker, May 18 2014

Formula

a(n+3) = 3*2^n - a(n), a(0)=a(1)=0, a(2)=2.
a(n) = 2*A113405(n+1) - A113405(n).
a(n+1) = 2*a(n) + period 6: repeat 0, 2, -1, 0, -2, 1. a(0)=0.
a(n) = 2^n - A081374(n+1).
a(n+3) = a(n+1) + A130755(n).
G.f.: x^2*(x-2) / ((x+1)*(2*x-1)*(x^2-x+1)). - Colin Barker, May 18 2014
a(n) = A024495(n) + A131531(n).
a(n+6) = a(n) + 21*2^n, a(0)=a(1)=0, a(2)=2, a(3)=3, a(4)=6, a(5)=10.
a(n) = A001045(n) - A092220(n).
a(n+12) = a(n) + 1365*2^n. First 12 values in the Data. (A024495(n+12) = A024495(n) + 1365*2^n).
a(3n) = A132805(n) = 3*A015565(n).
a(3n+1) = A132804(n) = 6*A015565(n).
a(3n+2) = A132397(n) = 2*A082311(n).
a(n) = 1/3*((-1)^n - 2*cos((n*Pi)/3) + 2^n). - Alexander R. Povolotsky, Jun 02 2014

Extensions

More terms from Colin Barker, May 18 2014

A290285 Determinant of circulant matrix of order 3 with entries in the first row (-1)^j * Sum_{k>=0} binomial(n,3*k+j), j=0,1,2.

Original entry on oeis.org

1, 0, 0, 62, 666, 5292, 39754, 307062, 2456244, 19825910, 159305994, 1274445900, 10184391946, 81430393590, 651443132340, 5212260963062, 41700950994186, 333607607822412, 2668815050206474, 21350337149539062, 170802697195263924, 1366424509598012150
Offset: 0

Views

Author

Vladimir Shevelev, Jul 26 2017

Keywords

Comments

In the Shevelev link the author proved that, for even N>=2 and every n>=1, the determinant of circulant matrix of order N with entries in the first row being (-1)^j*Sum_{k>=0} binomial(n,N*k+j), j=0..N-1, is 0. This sequence shows what happens for the first odd N>2.

Crossrefs

Programs

  • Maple
    a:= n-> LinearAlgebra[Determinant](Matrix(3, shape=Circulant[seq(
            (-1)^j*add(binomial(n, 3*k+j), k=0..(n-j)/3), j=0..2)])):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jul 27 2017
  • Mathematica
    ro[n_] := Table[(-1)^j Sum[Binomial[n, 3k+j], {k, 0, n/3}], {j, 0, 2}];
    M[n_] := Table[RotateRight[ro[n], m], {m, 0, 2}];
    a[n_] := Det[M[n]];
    Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Aug 09 2018 *)
  • PARI
    mj(j,n) = (-1)^j*sum(k=0, n\3, binomial(n, 3*k+j));
    a(n) = {m = matrix(3, 3); for (j=1, 3, m[1, j] = mj(j-1,n)); for (j=2, 3, m[2, j] = m[1, j-1]); m[2, 1] = m[1, 3]; for (j=2, 3, m[3, j] = m[2, j-1]); m[3, 1] = m[2, 3]; matdet(m);} \\ Michel Marcus, Jul 26 2017
    
  • Python
    from sympy.matrices import Matrix
    from sympy import binomial
    def mj(j, n):
        return (-1)**j*sum(binomial(n, 3*k + j) for k in range(n//3 + 1))
    def a(n):
        m=Matrix(3, 3, [0]*9)
        for j in range(3):m[0, j]=mj(j, n)
        for j in range(1, 3):m[1, j]=m[0, j - 1]
        m[1, 0]=m[0, 2]
        for j in range(1, 3):m[2, j] = m[1, j - 1]
        m[2, 0]=m[1, 2]
        return m.det()
    print([a(n) for n in range(22)]) # Indranil Ghosh, Jul 31 2017

Formula

G.f.: (1-12*x+48*x^2-73*x^3+6*x^4-60*x^5+736*x^6-576*x^7)/((1+x)*(-1+2*x)*(-1+8*x)* (1-x+x^2)*(1+2*x+4*x^2)*(1-4*x+16*x^2)). - Peter J. C. Moses, Jul 26 2017

Extensions

More terms from Peter J. C. Moses, Jul 26 2017

A290993 p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - S^6.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 6, 21, 56, 126, 252, 463, 804, 1365, 2366, 4368, 8736, 18565, 40410, 87381, 184604, 379050, 758100, 1486675, 2884776, 5592405, 10919090, 21572460, 43144920, 87087001, 176565486, 357913941, 723002336, 1453179126, 2906358252, 5791193143
Offset: 0

Views

Author

Clark Kimberling, Aug 21 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291000 for a guide to related sequences.

Crossrefs

Sequences of the form x^(m-1)/((1-x)^m - x^m): A000079 (m=1), A131577 (m=2), A024495 (m=3), A000749 (m=4), A139761 (m=5), this sequence (m=6), A290994 (m=7), A290995 (m=8).

Programs

  • GAP
    a:=[0,0,0,0,1];;  for n in [6..35] do a[n]:=6*a[n-1]-15*a[n-2]+20*a[n-3]-15*a[n-4]+6*a[n-5]; od; Concatenation([0],a); # Muniru A Asiru, Oct 23 2018
    
  • Magma
    R:=PowerSeriesRing(Integers(), 60); [0,0,0,0,0] cat Coefficients(R!( x^5/((1-x)^6 - x^6) )); // G. C. Greubel, Apr 11 2023
    
  • Maple
    seq(coeff(series(x^5/((1-2*x)*(1-x+x^2)*(1-3*x+3*x^2)),x,n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Oct 23 2018
  • Mathematica
    z = 60; s = x/(1 - x); p = 1 - s^6;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000012 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A290993 *)
  • PARI
    concat(vector(5), Vec(x^5 / ((1 - 2*x)*(1 - x + x^2)*(1 - 3*x + 3*x^2)) + O(x^50))) \\ Colin Barker, Aug 24 2017
    
  • SageMath
    def A290993_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^5/((1-x)^6 - x^6) ).list()
    A290993_list(60) # G. C. Greubel, Apr 11 2023

Formula

a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) for n>5. Corrected by Colin Barker, Aug 24 2017
G.f.: x^5 / ((1 - 2*x)*(1 - x + x^2)*(1 - 3*x + 3*x^2)). - Colin Barker, Aug 24 2017
a(n) = A192080(n-5) for n > 5. - Georg Fischer, Oct 23 2018
G.f.: x^5/((1-x)^6 - x^6). - G. C. Greubel, Apr 11 2023

A290994 p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - S^7.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 7, 28, 84, 210, 462, 924, 1717, 3017, 5110, 8568, 14756, 27132, 54264, 116281, 257775, 572264, 1246784, 2641366, 5430530, 10861060, 21242341, 40927033, 78354346, 150402700, 291693136, 574274008, 1148548016, 2326683921, 4749439975
Offset: 0

Views

Author

Clark Kimberling, Aug 22 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291000 for a guide to related sequences.

Crossrefs

Sequences of the form x^(m-1)/((1-x)^m - x^m): A000079 (m=1), A131577 (m=2), A024495 (m=3), A000749 (m=4), A139761 (m=5), A290993 (m=6), this sequence (m=7), A290995 (m=8).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 60); [0,0,0,0,0,0] cat Coefficients(R!( x^6/((1-x)^7 - x^7) )); // G. C. Greubel, Apr 11 2023
    
  • Mathematica
    z = 60; s = x/(1 - x); p = 1 - s^7;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000012 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A290994 *)
  • PARI
    concat(vector(6), Vec(x^6 / ((1 - 2*x)*(1 - 5*x + 11*x^2 - 13*x^3 + 9*x^4 - 3*x^5 + x^6)) + O(x^50))) \\ Colin Barker, Aug 22 2017
    
  • SageMath
    def A290994_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^6/((1-x)^7 - x^7) ).list()
    A290994_list(60) # G. C. Greubel, Apr 11 2023

Formula

a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + 2*a(n-7) for n >= 8.
G.f.: x^6 / ((1 - 2*x)*(1 - 5*x + 11*x^2 - 13*x^3 + 9*x^4 - 3*x^5 + x^6)). - Colin Barker, Aug 22 2017
a(n) = A049017(n-6) for n > 5. - Georg Fischer, Oct 23 2018
G.f.: x^6/((1-x)^7 - x^7). - G. C. Greubel, Apr 11 2023

A369174 Irregular triangle read by rows: row n lists the number of U characters for each of the distinct derivable strings in the MIU formal system that are n characters long.

Original entry on oeis.org

0, 1, 1, 0, 2, 2, 1, 2, 1, 1, 3, 3, 2, 3, 2, 2, 3, 2, 2, 2, 0, 4, 4, 3, 4, 3, 3, 4, 3, 3, 3, 1, 4, 3, 3, 3, 1, 3, 1, 1, 1, 0, 5, 5, 4, 5, 4, 4, 5, 4, 4, 4, 2, 5, 4, 4, 4, 2, 4, 2, 2, 2, 1, 5, 4, 4, 4, 2, 4, 2, 2, 2, 1, 4, 2, 2, 2, 1, 2, 2, 1, 2, 1, 1
Offset: 2

Views

Author

Paolo Xausa, Jan 15 2024

Keywords

Comments

See A368946 for the description of the MIU formal system and A369173 for the triangle of the corresponding derivable strings.

Examples

			Triangle begins:
  [2] 0;
  [3] 1 1 0;
  [4] 2 2 1 2 1 1;
  [5] 3 3 2 3 2 2 3 2 2 2 0;
  [6] 4 4 3 4 3 3 4 3 3 3 1 4 3 3 3 1 3 1 1 1 0;
  ...
		

References

  • Douglas R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden Braid, Basic Books, 1979, pp. 33-41 and pp. 261-262.

Crossrefs

Cf. A024495 (row lengths), A055641, A368946, A369173, A369179 (number of ones).

Programs

  • Mathematica
    A369174row[n_] := n - 1 - Select[Map[Count[#, 1]&, Tuples[{0, 1}, n - 1]], !Divisible[#, 3]&]; Array[A369174row, 6, 2]

Formula

T(n,k) = A055641(A369173(n,k)).
T(n,k) = n - 1 - A369179(n,k).

A369179 Irregular triangle read by rows: row n lists the number of I characters for each of the distinct derivable strings in the MIU formal system that are n characters long.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 4, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 4, 1, 2, 2, 2, 4, 2, 4, 4, 4, 5, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 4, 1, 2, 2, 2, 4, 2, 4, 4, 4, 5, 1, 2, 2, 2, 4, 2, 4, 4, 4, 5, 2, 4, 4, 4, 5, 4, 4, 5, 4, 5, 5
Offset: 2

Views

Author

Paolo Xausa, Jan 16 2024

Keywords

Comments

See A368946 for the description of the MIU formal system and A369173 for the triangle of the corresponding derivable strings.

Examples

			Triangle begins:
  [2] 1;
  [3] 1 1 2;
  [4] 1 1 2 1 2 2;
  [5] 1 1 2 1 2 2 1 2 2 2 4;
  [6] 1 1 2 1 2 2 1 2 2 2 4 1 2 2 2 4 2 4 4 4 5;
  ...
		

References

  • Douglas R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden Braid, Basic Books, 1979, pp. 33-41 and pp. 261-262.

Crossrefs

Cf. A024495 (row lengths), A268643, A368946, A369173, A369174 (number of zeros).

Programs

  • Mathematica
    A369179row[n_] := Select[Map[Count[#, 1]&, Tuples[{0, 1}, n - 1]], !Divisible[#, 3]&]; Array[A369179row, 6, 2]

Formula

T(n,k) = A268643(A369173(n,k)).
T(n,k) = n - 1 - A369174(n,k).
T(n,k) mod 3 > 0.

A086953 Binomial transform of (-1)^mod(n,3) (A257075).

Original entry on oeis.org

1, 0, 0, 2, 6, 12, 22, 42, 84, 170, 342, 684, 1366, 2730, 5460, 10922, 21846, 43692, 87382, 174762, 349524, 699050, 1398102, 2796204, 5592406, 11184810, 22369620, 44739242, 89478486, 178956972, 357913942, 715827882, 1431655764, 2863311530, 5726623062
Offset: 0

Views

Author

Paul Barry, Jul 25 2003

Keywords

Crossrefs

Programs

Formula

a(n+3)/2 = A024495(n+2). - corrected by Vladimir Shevelev, Aug 08 2017
a(n) = 0^n + Sum{k=0..floor((n-1)/3)} C(n-1, 3*k+2).
a(n) = Sum{k=0..n} C(n, k)(-1)^mod(k, 3).
G.f.: (1 - 3*x + 3*x^2)/((1 - 2*x)*(1 - x + x^2)). - Paul Barry, Dec 14 2004
From Vladimir Shevelev, Aug 02 2017: (Start)
a(n) = A024493(n) - A131708(n) + A024495(n);
a(n) = A024495(n) if and only if n == 1 (mod 3);
a(n) = A024495(n) - 1 if and only if n == 2 or 3 (mod 6);
a(n) = A024495(n) + 1 if and only if n == 0 or 5 (mod 6);
a(3*k+1) = 2*A024495(3*k). (End)
a(n) = A131370(n+1)/2. - Rick L. Shepherd, Aug 02 2017
3*a(n) = 2^n + 2*A057079(n+2). - R. J. Mathar, Aug 04 2017
Previous Showing 41-50 of 66 results. Next