cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 228 results. Next

A307042 Partial sums of the exponential divisors sum function: Sum_{k=1..n} esigma(k), where esigma is A051377.

Original entry on oeis.org

1, 3, 6, 12, 17, 23, 30, 40, 52, 62, 73, 91, 104, 118, 133, 155, 172, 196, 215, 245, 266, 288, 311, 341, 371, 397, 427, 469, 498, 528, 559, 593, 626, 660, 695, 767, 804, 842, 881, 931, 972, 1014, 1057, 1123, 1183, 1229, 1276, 1342, 1398, 1458, 1509, 1587, 1640
Offset: 1

Views

Author

Amiram Eldar, Mar 21 2019

Keywords

Crossrefs

Programs

  • Mathematica
    esigma[n_] := Times @@ (Sum[ First[#]^d, {d, Divisors[Last[#]]}] & ) /@ FactorInteger[n]; Accumulate[Array[esigma, 60]] (* after Jean-François Alcover at A051377 *)

Formula

a(n) ~ B * n^2, where B = 0.5682854937... (A275480).

A346533 Irregular triangle read by rows in which row n lists the first n - 2 terms of A000203 together with the sum of A000203(n-1) and A000203(n), with a(1) = 1.

Original entry on oeis.org

1, 4, 1, 7, 1, 3, 11, 1, 3, 4, 13, 1, 3, 4, 7, 18, 1, 3, 4, 7, 6, 20, 1, 3, 4, 7, 6, 12, 23, 1, 3, 4, 7, 6, 12, 8, 28, 1, 3, 4, 7, 6, 12, 8, 15, 31, 1, 3, 4, 7, 6, 12, 8, 15, 13, 30, 1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 40, 1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 42, 1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 38
Offset: 1

Views

Author

Omar E. Pol, Jul 22 2021

Keywords

Comments

T(n,k) is the total area (or number of cells) of the terraces that are in the k-th level that contains terraces starting from the top of the symmetric tower (a polycube) described in A221529.
The height of the tower equals A000041(n-1).
The terraces of the tower are the symmetric representation of sigma.
The terraces are in the levels that are the partition numbers A000041 starting from the base.
Note that for n >= 2 there are n - 1 terraces because the lower terrace of the tower is formed by two symmetric representations of sigma in the same level.

Examples

			Triangle begins:
  1;
  4;
  1, 7;
  1, 3, 11;
  1, 3,  4, 13;
  1, 3,  4,  7, 18;
  1, 3,  4,  7,  6, 20;
  1, 3,  4,  7,  6, 12, 23;
  1, 3,  4,  7,  6, 12,  8, 28;
  1, 3,  4,  7,  6, 12,  8, 15, 31;
  1, 3,  4,  7,  6, 12,  8, 15, 13, 30;
  1, 3,  4,  7,  6, 12,  8, 15, 13, 18, 40;
  1, 3,  4,  7,  6, 12,  8, 15, 13, 18, 12, 42;
  1, 3,  4,  7,  6, 12,  8, 15, 13, 18, 12, 28, 38;
  ...
For n = 7, sigma(7) = 1 + 7 = 8 and sigma(6) = 1 + 2 + 3 + 6 = 12, and 8 + 12 = 20, so the last term of row 7 is T(7,6) = 20. The other terms in row 7 are the first five terms of A000203, so the 7th row of the triangle is [1, 3, 4, 7, 6, 20].
For n = 7 we can see below the top view and the lateral view of the pyramid described in A245092 (with seven levels) and the top view and the lateral view of the tower described in A221529 (with 11 levels).
                                           _
                                          | |
                                          | |
                                          | |
        _                                 |_|_
       |_|_                               |   |
       |_ _|_                             |_ _|_
       |_ _|_|_                           |   | |
       |_ _ _| |_                         |_ _|_|_
       |_ _ _|_ _|_                       |_ _ _| |_
       |_ _ _ _| | |_                     |_ _ _|_ _|_ _
       |_ _ _ _|_|_ _|                    |_ _ _ _|_|_ _|
.
         Figure 1.                           Figure 2.
        Lateral view                       Lateral view
       of the pyramid.                     of the tower.
.
.       _ _ _ _ _ _ _                      _ _ _ _ _ _ _
       |_| | | | | | |                    |_| | | | |   |
       |_ _|_| | | | |                    |_ _|_| | |   |
       |_ _|  _|_| | |                    |_ _|  _|_|   |
       |_ _ _|    _|_|                    |_ _ _|    _ _|
       |_ _ _|  _|                        |_ _ _|  _|
       |_ _ _ _|                          |       |
       |_ _ _ _|                          |_ _ _ _|
.
          Figure 3.                          Figure 4.
          Top view                           Top view
       of the pyramid.                     of the tower.
.
Both polycubes have the same base which has an area equal to A024916(7) = 41 equaling the sum of the 7th row of triangle.
Note that in the top view of the tower the symmetric representation of sigma(6) and the symmetric representation of sigma(7) appear unified in the level 1 of the structure as shown above in the figure 4 (that is due the first two partition numbers A000041 are [1, 1]), so T(7,6) = sigma(7) + sigma(6) = 8 + 12 = 20.
.
Illustration of initial terms:
   Row 1    Row 2      Row 3      Row 4        Row 5          Row 6
.
    1        4         1 7        1 3 11       1 3 4 13       1 3 4 7 18
.   _        _ _       _ _ _      _ _ _ _      _ _ _ _ _      _ _ _ _ _ _
   |_|      |   |     |_|   |    |_| |   |    |_| | |   |    |_| | | |   |
            |_ _|     |    _|    |_ _|   |    |_ _|_|   |    |_ _|_| |   |
                      |_ _|      |      _|    |_ _|  _ _|    |_ _|  _|   |
                                 |_ _ _|      |     |        |_ _ _|    _|
                                              |_ _ _|        |        _|
                                                             |_ _ _ _|
.
		

Crossrefs

Mirror of A340584.
The length of row n is A028310(n-1).
Row sums give A024916.
Leading diagonal gives A092403.
Other diagonals give A000203.
Companion of A346562.
Cf. A175254 (volume of the pyramid).
Cf. A066186 (volume of the tower).

Programs

  • Mathematica
    A346533row[n_]:=If[n==1,{1},Join[DivisorSigma[1,Range[n-2]],{Total[DivisorSigma[1,{n-1,n}]]}]];Array[A346533row,15] (* Paolo Xausa, Oct 23 2023 *)

A350106 Square array T(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where T(n,k) = Sum_{j=1..n} j * floor(n/j)^k.

Original entry on oeis.org

1, 1, 4, 1, 6, 8, 1, 10, 14, 15, 1, 18, 32, 31, 21, 1, 34, 86, 87, 45, 33, 1, 66, 248, 295, 153, 81, 41, 1, 130, 734, 1095, 669, 309, 101, 56, 1, 258, 2192, 4231, 3201, 1521, 443, 150, 69, 1, 514, 6566, 16647, 15765, 8373, 2633, 722, 191, 87, 1, 1026, 19688, 66055, 78393, 48321, 17411, 4746, 1005, 253, 99
Offset: 1

Views

Author

Seiichi Manyama, Dec 14 2021

Keywords

Examples

			Square array begins:
   1,   1,   1,    1,     1,      1,      1, ...
   4,   6,  10,   18,    34,     66,    130, ...
   8,  14,  32,   86,   248,    734,   2192, ...
  15,  31,  87,  295,  1095,   4231,  16647, ...
  21,  45, 153,  669,  3201,  15765,  78393, ...
  33,  81, 309, 1521,  8373,  48321, 284709, ...
  41, 101, 443, 2633, 17411, 119321, 828323, ...
		

Crossrefs

Columns k=1..3 give A024916, A350107, A350108.
T(n,n) gives A350109.

Programs

  • Mathematica
    T[n_, k_] := Sum[j * Floor[n/j]^k, {j, 1, n}]; Table[T[k, n - k + 1], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Dec 14 2021 *)
  • PARI
    T(n, k) = sum(j=1, n, j*(n\j)^k);
    
  • PARI
    T(n, k) = sum(j=1, n, j*sumdiv(j, d, (d^k-(d-1)^k)/d));

Formula

G.f. of column k: (1/(1 - x)) * Sum_{j>=1} (j^k - (j - 1)^k) * x^j/(1 - x^j)^2.
T(n,k) = Sum_{j=1..n} j * Sum_{d|j} (d^k - (d - 1)^k)/d.

A365409 a(n) = Sum_{k=1..n} binomial(floor(n/k)+3,4).

Original entry on oeis.org

1, 6, 17, 42, 78, 149, 234, 379, 555, 815, 1102, 1557, 2013, 2662, 3388, 4349, 5319, 6695, 8026, 9846, 11712, 14027, 16328, 19503, 22464, 26200, 30030, 34759, 39255, 45221, 50678, 57623, 64465, 72579, 80469, 90665, 99805, 111020, 122146, 135566, 147908, 163638
Offset: 1

Views

Author

Seiichi Manyama, Oct 23 2023

Keywords

Crossrefs

Partial sums of A059358.

Programs

  • PARI
    a(n) = sum(k=1, n, binomial(n\k+3, 4));
    
  • Python
    from math import isqrt, comb
    def A365409(n): return -(s:=isqrt(n))**2*comb(s+3,3)+sum((q:=n//k)*((comb(k+2,3)<<2)+comb(q+3,3)) for k in range(1,s+1))>>2 # Chai Wah Wu, Oct 26 2023

Formula

a(n) = Sum_{k=1..n} binomial(k+2,3) * floor(n/k).
G.f.: 1/(1-x) * Sum_{k>=1} x^k/(1-x^k)^4 = 1/(1-x) * Sum_{k>=1} binomial(k+2,3) * x^k/(1-x^k).
a(n) = (A064603(n)+3*A064602(n)+2*A024916(n))/6. - Chai Wah Wu, Oct 26 2023

A024917 a(n) = Sum_{k=2..n} k*floor(n/k).

Original entry on oeis.org

2, 5, 11, 16, 27, 34, 48, 60, 77, 88, 115, 128, 151, 174, 204, 221, 259, 278, 319, 350, 385, 408, 467, 497, 538, 577, 632, 661, 732, 763, 825, 872, 925, 972, 1062, 1099, 1158, 1213, 1302, 1343, 1438, 1481, 1564, 1641, 1712, 1759, 1882, 1938, 2030, 2101, 2198, 2251
Offset: 2

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [&+[k*Floor(n/k): k in [2..n]]: n in [2..55]]; // Bruno Berselli, Jan 08 2012
    
  • Mathematica
    Table[Sum[k*Floor[n/k],{k,2,n}],{n,2,60}] (* Harvey P. Dale, Mar 13 2015 *)
  • PARI
    a(n) = sum(k=2,n, k*floor(n/k)); \\ Michel Marcus, Sep 02 2019
    
  • Python
    from math import isqrt
    def A024917(n): return (-(s:=isqrt(n))**2*(s+1)+sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1))>>1)-n # Chai Wah Wu, Oct 23 2023

Formula

G.f.: (1/(1 - x)) * Sum_{k>=2} k*x^k/(1 - x^k). - Ilya Gutkovskiy, Sep 02 2019

A086718 Convolution of sequence of primes with sequence sigma(n).

Original entry on oeis.org

2, 9, 22, 48, 85, 151, 231, 355, 500, 709, 937, 1267, 1617, 2069, 2575, 3193, 3860, 4686, 5549, 6593, 7725, 8985, 10337, 11961, 13591, 15464, 17498, 19714, 22036, 24690, 27378, 30382, 33603, 37023, 40597, 44733, 48720, 53152, 57950, 62978, 68074, 73898, 79558
Offset: 1

Views

Author

Jon Perry, Jul 29 2003

Keywords

Comments

From Omar E. Pol, Dec 06 2021: (Start)
Antidiagonal sums of A272214.
Convolution of A000040 and A000203.
Convolution of A054541 and A024916.
Convolution of the nonzero terms of A007504 and A340793.
a(n) is also the volume of a tower or polycube in which the successive terraces are the symmetric representation of sigma(k), k = 1..n starting from the top, and the successive heights of the terraces are the prime numbers starting from the base. (End)

Crossrefs

Programs

  • Maple
    N:= 100: # to get a(1)..a(N)
    P:= [seq(ithprime(i),i=1..N+1)]:
    S:= [seq(numtheory:-sigma(i),i=1..N+1)]:
    seq(add(P[i]*S[n-i],i=1..n-1),n=2..N+1); # Robert Israel, Sep 09 2020
  • PARI
    p=primes(30); s=vector(30,i, sigma(i)); conv(u,v)=local(w); w=vector(length(u),i,sum(j=1,i,u[j]*v[i+1-j])); w;
    conv(p,s)

Extensions

More terms from Robert Israel, Sep 09 2020

A123327 a(n) = A000203(n) + A004125(n).

Original entry on oeis.org

1, 3, 5, 8, 10, 15, 16, 23, 25, 31, 34, 45, 42, 55, 60, 67, 69, 86, 84, 103, 102, 113, 122, 145, 134, 154, 165, 180, 181, 210, 199, 230, 232, 251, 266, 289, 271, 308, 325, 348, 339, 380, 369, 412, 417, 430, 451, 498, 471, 513, 521, 552, 559, 612, 601, 640, 633
Offset: 1

Views

Author

Paolo P. Lava and Giorgio Balzarotti, Sep 26 2006; Juri-Stepan Gerasimov, Jul 02 2009

Keywords

Comments

Another definition for this sequence: Let M be the matrix defined in A111490. Sequence gives M(1,1), M(1,2) + M(2,2), M(1,3) + M(2,3) + M(3,3), etc., i.e. a(n)= Sum_{i=1..n} M(i,n).
Proof from Hartmut F. W. Hoft, Feb 02 2014 that the two definitions agree: (Start)
For all n>=1 the following simplifications hold for the partial sums of the two sequences:
sum[1..n] a(k) = sum[1..n] A000203(k) + sum[1..n] A004125(k)
= A024916(n) + sum[1..n] A004125(k)
= n^2 + sum[1..n-1] A004125(k)
= sum[1..n] A123327(k).
An inductive argument then shows that the two definitions agree.
(End)

Examples

			1(=1+0), 3(=3+0), 5(=4+1), 8(=7+1), 10(=6+4), 15(=12+3), 16(=8+8), etc.
		

Crossrefs

Programs

  • Mathematica
    Lim=57;s2=Table[Sum[Mod[n, k], {k, 2, n-1}], {n, Lim}];Table[DivisorSigma[1, n]+s2[[n]],{n,Lim}] (* James C. McMahon, Nov 20 2024 *)
  • Python
    from math import isqrt
    def A123327(n): return n**2+((s:=isqrt(n-1))**2*(s+1)-sum((q:=(n-1)//k)*((k<<1)+q+1) for k in range(1,s+1))>>1) # Chai Wah Wu, Oct 22 2023

Formula

a(n) = A000290(n) - A024916(n-1), n > 1. - Omar E. Pol, Jan 29 2014

Extensions

Corrected (83 replaced by 103) by R. J. Mathar, May 21 2010
Edited by N. J. A. Sloane, Feb 02 2014, merging A162383 from Juri-Stepan Gerasimov with the present sequence. Thanks to Omar E. Pol for noticing the duplication.

A134867 A010766 * A000012.

Original entry on oeis.org

1, 3, 1, 5, 2, 1, 8, 4, 2, 1, 10, 5, 3, 2, 1, 14, 8, 5, 3, 2, 1, 16, 9, 6, 4, 3, 2, 1, 20, 12, 8, 6, 4, 3, 2, 1, 23, 14, 10, 7, 5, 4, 3, 2, 1, 27, 17, 12, 9, 7, 5, 4, 3, 2, 1, 29, 18, 13, 10, 8, 6, 5, 4, 3, 2, 1, 35, 23, 17, 13, 10, 8, 6, 5, 4, 3, 2, 1, 37, 24, 18, 14, 11, 9, 7, 6, 5, 4, 3, 2, 1
Offset: 1

Views

Author

Gary W. Adamson, Nov 14 2007

Keywords

Examples

			First few rows of the triangle:
   1;
   3,  1;
   5,  2,  1;
   8,  4,  2, 1;
  10,  5,  3, 2, 1;
  14,  8,  5, 3, 2, 1;
  16,  9,  6, 4, 3, 2, 1;
  20, 12,  8, 6, 4, 3, 2, 1;
  23, 14, 10, 7, 5, 4, 3, 2, 1;
  27, 17, 12, 9, 7, 5, 4, 3, 2, 1;
  ...
		

Crossrefs

Column k=1..4 give: A006218, A002541, A366968, A366972.
Row sums give A024916.

Programs

  • Mathematica
    t = Table[Sum[Floor[n/h], {h, k, n}], {n, 0, 10}, {k, 1, n}];
    u = Flatten[t]  (* A134867 array *)
    TableForm[t]    (* A134867 sequence *)
    (* Clark Kimberling, Oct 11 2014 *)
  • PARI
    T(n, k) = sum(j=k, n, n\j); \\ Seiichi Manyama, Oct 30 2023

Formula

A010766 * A000012 as infinite lower triangular matrices.
Triangle read by rows, partial row sums of A010766 starting fromt the right.
G.f. of column k: 1/(1-x) * Sum_{j>=1} x^(k*j)/(1-x^j) = 1/(1-x) * Sum_{j>=k} x^j/(1-x^j). - Seiichi Manyama, Oct 30 2023

Extensions

More terms from Seiichi Manyama, Oct 30 2023

A160664 a(n) = a(n-1) + A000203(n), a(0)=1.

Original entry on oeis.org

1, 2, 5, 9, 16, 22, 34, 42, 57, 70, 88, 100, 128, 142, 166, 190, 221, 239, 278, 298, 340, 372, 408, 432, 492, 523, 565, 605, 661, 691, 763, 795, 858, 906, 960, 1008, 1099, 1137, 1197, 1253, 1343, 1385, 1481, 1525, 1609, 1687, 1759, 1807, 1931, 1988, 2081, 2153
Offset: 0

Views

Author

Ctibor O. Zizka, May 22 2009

Keywords

Crossrefs

Cf. A054519, A092406, A024916. - Greg Dresden, Feb 23 2020

Programs

  • Maple
    ListTools:-PartialSums(map(numtheory:-sigma,[1,$1..100])); # Robert Israel, Dec 19 2016
  • Mathematica
    lst = {1}; a = 1; Do[a = a + DivisorSigma[1, n]; AppendTo[lst, a], {n, 80}]; lst (* Carl Najafi, Aug 21 2011 *)
    Transpose[NestList[{First[#]+1,Last[#]+DivisorSigma[1,First[#]+1]}&,{0,1},50]][[2]] (* Harvey P. Dale, May 05 2012 *)
  • PARI
    a(n)=1+sum(k=1,n,sigma(k)) \\ Charles R Greathouse IV, Aug 22 2011
    
  • Python
    from math import isqrt
    def A160664(n): return (-(s:=isqrt(n))**2*(s+1) + sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1))>>1)+1 # Chai Wah Wu, Oct 22 2023

Formula

a(n) = 1 + A024916(n). - R. J. Mathar, May 25 2009
a(n) = 9 + A092406(n) for n>3. - Greg Dresden, Feb 23 2020

Extensions

More terms from Carl Najafi, Aug 21 2011

A168012 a(n) = sum of all divisors of all numbers k such that n^2 <= k < (n+1)^2.

Original entry on oeis.org

8, 48, 133, 302, 516, 923, 1346, 2038, 2768, 3891, 4810, 6572, 7959, 10066, 12186, 14944, 17261, 21210, 23992, 28497, 32550, 37742, 42111, 48906, 54252, 61280, 68153, 76958, 82942, 94661, 101882, 113082, 123794, 135583, 145630, 161526
Offset: 1

Views

Author

Omar E. Pol, Nov 16 2009

Keywords

Examples

			a(2) = 48 because the numbers k are 4,5,6,7 and 8 (since 2^2 <= k < 3^2) and sigma(4) + sigma(5) + sigma(6) + sigma(7) + sigma(8) = 7 + 6 + 12 + 8 + 15 = 48, where sigma(n) is the sum of divisors of n (see A000203).
		

Crossrefs

Programs

  • Mathematica
    A168012[n_]:=Sum[DivisorSigma[1,k],{k,n^2,(n+1)^2-1}];
    Array[A168012,50] (* Paolo Xausa, Oct 23 2023 *)
  • PARI
    a(n)=sum(k=n^2,(n+1)^2-1,sigma(k)) \\ Franklin T. Adams-Watters, May 14 2010
    
  • Python
    def A168012(n):
        a, b = n*(n+2),(n-1)*(n+1)
        return (sum((q:=a//k)*((s:=k<<1)+q+1)-(r:=b//k)*(s+r+1) for k in range(1,n))>>1)+5*n+3 # Chai Wah Wu, Oct 23 2023

Extensions

More terms from Franklin T. Adams-Watters, May 14 2010
Previous Showing 101-110 of 228 results. Next