A026970
a(n) = Sum_{k=0..n} (k+1) * A026637(n,k).
Original entry on oeis.org
1, 3, 8, 25, 60, 147, 336, 765, 1700, 3751, 8184, 17745, 38220, 81915, 174752, 371365, 786420, 1660239, 3495240, 7340025, 15379100, 32156323, 67108848, 139810125, 290805060, 603979767, 1252698776, 2594876065, 5368709100
Offset: 0
A026647
a(n) = Sum_{k=0..floor(n/2)} A026637(n-k, k).
Original entry on oeis.org
1, 1, 2, 3, 6, 10, 17, 27, 45, 73, 119, 192, 312, 505, 818, 1323, 2142, 3466, 5609, 9075, 14685, 23761, 38447, 62208, 100656, 162865, 263522, 426387, 689910, 1116298, 1806209, 2922507, 4728717, 7651225, 12379943, 20031168
Offset: 0
-
[1] cat [n le 5 select Binomial(n, Floor(n/2)) else Self(n-2) +Self(n-3) +2*Self(n-4) +Self(n-5) +3: n in [1..40]]; // G. C. Greubel, Jul 01 2024
-
a[n_]:= a[n]= If[n<6, Binomial[n, Floor[n/2]], a[n-2] +a[n-3] +2*a[n- 4] +a[n-5] +3]; (* a = A026647 *)
Table[a[n], {n,0,40}] (* G. C. Greubel, Jul 01 2024 *)
LinearRecurrence[{1,1,0,1,-1,-1},{1,1,2,3,6,10,17},40] (* Harvey P. Dale, Jan 19 2025 *)
-
@CachedFunction
def a(n): # a = A026647
if n<6: return binomial(n, n//2)
else: return a(n-2) + a(n-3) + 2*a(n-4) + a(n-5) + 3
[a(n) for n in range(41)] # G. C. Greubel, Jul 01 2024
A026645
a(n) = Sum_{k=0..floor(n/2)} A026637(n, k).
Original entry on oeis.org
1, 1, 3, 5, 14, 21, 55, 85, 216, 341, 848, 1365, 3340, 5461, 13191, 21845, 52208, 87381, 206968, 349525, 821514, 1398101, 3264044, 5592405, 12979006, 22369621, 51642594, 89478485, 205592744, 357913941, 818848135, 1431655765, 3262611696, 5726623061, 13003800704, 22906492245
Offset: 0
-
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, If[k==1 || k==n-1, Floor[(3*n- 1)/2], T[n-1,k] + T[n-1,k-1] ]];
A026645[n_]:= Sum[T[n, k], {k, 0, Floor[n/2]}];
Table[A026645[n], {n,0,40}] (* G. C. Greubel, Jun 29 2024 *)
-
@CachedFunction
def T(n,k): # T = A026637
if k==0 or k==n: return 1
elif k==1 or k==n-1: return ((3*n-1)//2)
else: return T(n-1, k) + T(n-1, k-1)
def A026645(n): return sum(T(n,k) for k in range((n//2)+1))
[A026645(n) for n in range(41)] # G. C. Greubel, Jun 29 2024
A059260
Triangle read by rows giving coefficient T(i,j) of x^i y^j in 1/(1-y-x*y-x^2) = 1/((1+x)(1-x-y)) for (i,j) = (0,0), (1,0), (0,1), (2,0), (1,1), (0,2), ...
Original entry on oeis.org
1, 0, 1, 1, 1, 1, 0, 2, 2, 1, 1, 2, 4, 3, 1, 0, 3, 6, 7, 4, 1, 1, 3, 9, 13, 11, 5, 1, 0, 4, 12, 22, 24, 16, 6, 1, 1, 4, 16, 34, 46, 40, 22, 7, 1, 0, 5, 20, 50, 80, 86, 62, 29, 8, 1, 1, 5, 25, 70, 130, 166, 148, 91, 37, 9, 1, 0, 6, 30, 95, 200, 296, 314, 239, 128, 46, 10, 1
Offset: 0
Triangle begins
1;
0, 1;
1, 1, 1;
0, 2, 2, 1;
1, 2, 4, 3, 1;
0, 3, 6, 7, 4, 1;
1, 3, 9, 13, 11, 5, 1;
0, 4, 12, 22, 24, 16, 6, 1;
1, 4, 16, 34, 46, 40, 22, 7, 1;
0, 5, 20, 50, 80, 86, 62, 29, 8, 1;
Sequences obtained with _Miquel A. Fiol_'s Sep 30 2024 formula of A(n,c1,c2) for other values of (c1,c2). (In the table, rows are indexed by c1=0..6 and columns by c2=0..6):
A000007 A000012 A000027 A025747 A000292* A000332* A000389*
A059841 A008619 A087811* A002623 A001752 A001753 A001769
A193356 A008794* A005993 A005994 ------- ------- -------
------- ------- ------- A005995 A018210 ------- A052267
------- ------- ------- ------- A018211 A018212 -------
------- ------- ------- ------- ------- A018213 A018214
------- ------- ------- ------- ------- ------- A062136
*requires offset adjustment.
The 2-supertoken FF_2(S_3) of the star graph S_3 with central vertex 1 and peripheral vertices 2,3,4. (The vertex `ij' of FF_2(S_3) represents the configuration of one token in `ì' and the other token in `j'). The T(5,3)=7 independent vertices are 22, 24, 44, 23, 11, 34, and 33.
22--12---24---14---44
| \ / |
23 11 34
\ | /
13
|
33
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Roland Bacher, Chebyshev polynomials, quadratic surds and a variation of Pascal's triangle, arXiv:1509.09054 [math.CO], 2015.
- Joseph Briggs, Alex Parker, Coy Schwieder, and Chris Wells, Frogs, hats and common subsequences, arXiv:2404.07285 [math.CO], 2024. See p. 28.
- Robert Coquereaux and Éric Ragoucy, Currents on Grassmann algebras, J. of Geometry and Physics, 1995, Vol 15, pp 333-352.
- Robert Coquereaux and Éric Ragoucy, Currents on Grassmann algebras, arXiv:hep-th/9310147, 1993.
- Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus. II. A compendium of results, arXiv:2305.01100 [math.CO], 2023. See p. 8.
- R. H. Hammack and G. D. Smith, Cycle bases of reduced powers of graphs, Ars Math. Contemp. 12 (2017) 183-203.
- Christian Kassel, A Künneth formula for the cyclic cohomology of Z2-graded algebras, Math. Ann. 275 (1986) 683.
- Ana Filipa Loureiro and Pascal Maroni, Polynomial sequences associated with the classical linear functionals, Numerical Algorithms, June 2012, Volume 60, Issue 2, pp 297-314. - From _N. J. A. Sloane_, Oct 12 2012
- Ana Filipa Loureiro and Pascal Maroni, Polynomial sequences associated with the classical linear functionals, preprint, Centro de Matemática da Universidade do Porto.
- MathOverflow, Cyclotomic Polynomials in Combinatorics
- Mark Norfleet, Characterization of second-order strong divisibility sequences of polynomials, The Fibonacci Quarterly, 43(2) (2005), 166-169.
Seen as a square array read by antidiagonals this is the coefficient of x^k in expansion of 1/((1-x^2)*(1-x)^n) with rows
A002620,
A002623,
A001752,
A001753,
A001769,
A001779,
A001780,
A001781,
A001786,
A001808 etc. (allowing for signs).
A058393 would then effectively provide the table for nonpositive n. -
Henry Bottomley, Jun 25 2001
-
read transforms; 1/(1-y-x*y-x^2); SERIES2(%,x,y,12); SERIES2TOLIST(%,x,y,12);
-
t[n_, k_] := Sum[ (-1)^(n-j)*Binomial[j, k], {j, 0, n}]; Flatten[ Table[t[n, k], {n, 0, 12}, {k, 0, n}]] (* Jean-François Alcover, Oct 20 2011, after Paul Barry *)
-
T(n, k) = sum(j=0, n, (-1)^(n - j)*binomial(j, k));
for(n=0, 12, for(k=0, n, print1(T(n, k),", ");); print();) \\ Indranil Ghosh, Apr 11 2017
-
from sympy import binomial
def T(n, k): return sum((-1)**(n - j)*binomial(j, k) for j in range(n + 1))
for n in range(13): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Apr 11 2017
-
def A059260_row(n):
@cached_function
def prec(n, k):
if k==n: return 1
if k==0: return 0
return -prec(n-1,k-1)-sum(prec(n,k+i-1) for i in (2..n-k+1))
return [(-1)^(n-k+1)*prec(n+1, n-k+1) for k in (1..n)]
for n in (1..9): print(A059260_row(n)) # Peter Luschny, Mar 16 2016
A026644
a(n) = a(n-1) + 2*a(n-2) + 2, for n>=3, where a(0)= 1, a(1)= 2, a(2)= 4.
Original entry on oeis.org
1, 2, 4, 10, 20, 42, 84, 170, 340, 682, 1364, 2730, 5460, 10922, 21844, 43690, 87380, 174762, 349524, 699050, 1398100, 2796202, 5592404, 11184810, 22369620, 44739242, 89478484, 178956970, 357913940, 715827882, 1431655764, 2863311530, 5726623060
Offset: 0
- Richard I. Hess, Compendium of Over 7000 Wire Puzzles, privately printed, 1991.
- Richard I. Hess, Analysis of Ring Puzzles, booklet distributed at 13th International Puzzle Party, Amsterdam, Aug 20 1993.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Thomas Baruchel, Properties of the cumulated deficient binary digit sum, arXiv:1908.02250 [math.NT], 2019.
- Sela Fried, Economically solving the Tower of Hanoi puzzle.
- Nicolas Gastineau and O. Togni, On S-packing edge-colorings of cubic graphs, arXiv preprint arXiv:1711.10906 [cs.DM], 2017.
- Lee Hae-hwang, Illustration of initial terms in terms of rosemary plants
- Krzysztof A. Meissner, Black hole entropy in Loop Quantum Gravity, arXiv:gr-qc/0407052, 2004.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-2).
A167030 is an essentially identical sequence.
-
[n eq 0 select 1 else (2^(n+2) -3-(-1)^n)/3 : n in [0..40]]; // G. C. Greubel, Jun 28 2024
-
f:=n-> if n mod 2 = 0 then (2^(n+2)-4)/3 else (2^(n+2)-2)/3; fi;
-
Join[{1}, Floor[(2^Range[3, 40] - 2)/3]] (* or *) LinearRecurrence[{2,1,-2},{1,2,4,10},40] (* Vladimir Joseph Stephan Orlovsky, Jan 29 2012 *)
CoefficientList[Series[(1-x^2+2x^3)/((1-x)(1-x-2x^2)),{x,0,1001}],x] (* Vincenzo Librandi, Apr 04 2012 *)
-
Vec((1-x^2+2*x^3)/(1-x)/(1-x-2*x^2)+O(x^99)) \\ Charles R Greathouse IV, Apr 04 2012
-
def A026644(n): return ((4<Chai Wah Wu, Apr 17 2025
-
[(2^(n+2)-3-(-1)^n)/3 + int(n==0) for n in range(41)] # G. C. Greubel, Jun 28 2024
Recurrence in definition line found by
Lee Hae-hwang, Apr 03 2002
A228053
A triangle formed like Pascal's triangle, but with (-1)^(n+1) on the borders instead of 1.
Original entry on oeis.org
-1, 1, 1, -1, 2, -1, 1, 1, 1, 1, -1, 2, 2, 2, -1, 1, 1, 4, 4, 1, 1, -1, 2, 5, 8, 5, 2, -1, 1, 1, 7, 13, 13, 7, 1, 1, -1, 2, 8, 20, 26, 20, 8, 2, -1, 1, 1, 10, 28, 46, 46, 28, 10, 1, 1, -1, 2, 11, 38, 74, 92, 74, 38, 11, 2, -1, 1, 1, 13, 49, 112, 166, 166, 112
Offset: 0
Triangle begins:
-1,
1, 1,
-1, 2, -1,
1, 1, 1, 1,
-1, 2, 2, 2, -1,
1, 1, 4, 4, 1, 1,
-1, 2, 5, 8, 5, 2, -1,
1, 1, 7, 13, 13, 7, 1, 1,
-1, 2, 8, 20, 26, 20, 8, 2, -1,
1, 1, 10, 28, 46, 46, 28, 10, 1, 1,
-1, 2, 11, 38, 74, 92, 74, 38, 11, 2, -1
-
a228053 n k = a228053_tabl !! n !! k
a228053_row n = a228053_tabl !! n
a228053_tabl = iterate (\row@(i:_) -> zipWith (+)
([- i] ++ tail row ++ [0]) ([0] ++ init row ++ [- i])) [- 1]
-- Reinhard Zumkeller, Aug 08 2013
-
t = {}; Do[r = {}; Do[If[k == 0 || k == n, m = (-1)^(n+1), m = t[[n, k]] + t[[n, k + 1]]]; r = AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t = Flatten[t]
Comments