cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 63 results. Next

A086972 a(n) = n*3^(n-1) + (3^n + 1)/2.

Original entry on oeis.org

1, 3, 11, 41, 149, 527, 1823, 6197, 20777, 68891, 226355, 738113, 2391485, 7705895, 24712007, 78918989, 251105873, 796364339, 2518233179, 7942120025, 24988621541, 78452649023, 245818300271, 768835960421, 2400651060089
Offset: 0

Views

Author

Paul Barry, Jul 26 2003

Keywords

Comments

Binomial transform of A057711 (without leading zero). Second binomial transform of (1,1,3,3,5,5,7,7,9,9,11,11,...).

Crossrefs

Partial sums of A199923.

Programs

  • Magma
    [n*3^(n-1) + (3^n+1)/2: n in [0..30]]; // Vincenzo Librandi, Jun 09 2011
    
  • Mathematica
    Table[((2*n+3)*3^(n-1) +1)/2, {n,0,30}] (* G. C. Greubel, Nov 24 2023 *)
  • PARI
    Vec((1-4*x+5*x^2)/((1-x)*(1-3*x)^2) + O(x^40)) \\ Michel Marcus, Mar 08 2016
    
  • SageMath
    [((2*n+3)*3^(n-1) +1)//2 for n in range(31)] # G. C. Greubel, Nov 24 2023

Formula

a(n) = (1/2)*(A081038(n) + 1).
G.f.: (1-4*x+5*x^2)/((1-x)*(1-3*x)^2).
a(n) = A027471(n) + A007051(n).
E.g.f.: (1/2)*( exp(x) + (2*x+1)*exp(3*x) ). - G. C. Greubel, Nov 24 2023

A104002 Triangle T(n,k) read by rows: number of permutations in S_n avoiding all k-length patterns that start with 1 except one fixed pattern and containing it exactly once.

Original entry on oeis.org

1, 2, 1, 3, 4, 1, 4, 12, 6, 1, 5, 32, 27, 8, 1, 6, 80, 108, 48, 10, 1, 7, 192, 405, 256, 75, 12, 1, 8, 448, 1458, 1280, 500, 108, 14, 1, 9, 1024, 5103, 6144, 3125, 864, 147, 16, 1, 10, 2304, 17496, 28672, 18750, 6480, 1372, 192, 18, 1, 11, 5120, 59049, 131072
Offset: 2

Views

Author

Ralf Stephan, Feb 26 2005

Keywords

Comments

T(n+k,k+1) = total number of occurrences of any given letter in all possible n-length words on a k-letter alphabet. For example, with the 2 letter alphabet {0,1} there are 4 possible 2-length words: {00,01,10,11}. The letter 0 occurs 4 times altogether, as does the letter 1. T(4,3) = 4. - Ross La Haye, Jan 03 2007
Table T(n,k) = k*n^(k-1) n,k > 0 read by antidiagonals. - Boris Putievskiy, Dec 17 2012

Examples

			Triangle begins:
  1;
  2,   1;
  3,   4,    1;
  4,  12,    6,    1;
  5,  32,   27,    8,   1;
  6,  80,  108,   48,  10,   1;
  7, 192,  405,  256,  75,  12,  1;
  8, 448, 1458, 1280, 500, 108, 14, 1;
		

Crossrefs

Programs

  • Mathematica
    Table[(n - k + 1) (k - 1)^(n - k), {n, 2, 12}, {k, 2, n}] // Flatten (* Michael De Vlieger, Aug 22 2018 *)

Formula

T(n, k) = (n-k+1) * (k-1)^(n-k), k<=n.
As a linear array, the sequence is a(n) = A004736(n)*A002260(n)^(A004736(n)-1) or a(n) = ((t*t+3*t+4)/2-n)*(n-(t*(t+1)/2))^((t*t+3*t+4)/2-n-1), where t=floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Dec 17 2012

A174719 Triangle T(n, k, q) = (1-q^n)*( binomial(n, k) - 1 ) + 1, with q = 3, read by rows.

Original entry on oeis.org

1, 1, 1, 1, -7, 1, 1, -51, -51, 1, 1, -239, -399, -239, 1, 1, -967, -2177, -2177, -967, 1, 1, -3639, -10191, -13831, -10191, -3639, 1, 1, -13115, -43719, -74323, -74323, -43719, -13115, 1, 1, -45919, -177119, -360799, -452639, -360799, -177119, -45919, 1
Offset: 0

Views

Author

Roger L. Bagula, Mar 28 2010

Keywords

Comments

The row sums of this class of sequences, for varying q, is given by Sum_{k=0..n} T(n, k, q) = q^n * (n+1) + 2^n * (1 - q^n). - G. C. Greubel, Feb 09 2021

Examples

			Triangle begins as:
  1;
  1,      1;
  1,     -7,       1;
  1,    -51,     -51,       1;
  1,   -239,    -399,    -239,       1;
  1,   -967,   -2177,   -2177,    -967,       1;
  1,  -3639,  -10191,  -13831,  -10191,   -3639,       1;
  1, -13115,  -43719,  -74323,  -74323,  -43719,  -13115,      1;
  1, -45919, -177119, -360799, -452639, -360799, -177119, -45919, 1;
		

Crossrefs

Cf. A000012 (q=1), A174718 (q=2), this sequence (q=3), A174720 (q=4).

Programs

  • Magma
    T:= func< n,k,q | 1 + (1-q^n)*(Binomial(n,k) -1) >;
    [T(n,k,3): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 09 2021
  • Mathematica
    T[n_, k_, q_]:= 1 +(1-q^n)*(Binomial[n, k] -1);
    Table[T[n,k,3], {n,0,12}, {k,0,n}]//Flatten
  • Sage
    def T(n,k,q): return 1 + (1-q^n)*(binomial(n,k) - 1)
    flatten([[T(n,k,3) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 09 2021
    

Formula

T(n, k, q) = (1-q^n)*( binomial(n, k) - 1 ) + 1, with q=3.
Sum_{k=0..n} T(n, k, 3) = 3^n*(n+1) + 2^n*(1 - 3^n) = A027471(n+2) - A248216(n). - G. C. Greubel, Feb 09 2021

Extensions

Edited by G. C. Greubel, Feb 09 2021

A192083 Arithmetic derivative of squares of prime powers: a(n) = A003415(A056798(n)).

Original entry on oeis.org

0, 4, 6, 32, 10, 14, 192, 108, 22, 26, 1024, 34, 38, 46, 500, 1458, 58, 62, 5120, 74, 82, 86, 94, 1372, 106, 118, 122, 24576, 134, 142, 146, 158, 17496, 166, 178, 194, 202, 206, 214, 218, 226, 5324, 18750, 254, 114688, 262, 274, 278, 298, 302, 314, 326, 334
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 26 2011

Keywords

Comments

A001787 and A024622 give record values and where they occur.

Crossrefs

Programs

  • Mathematica
    s[n_] := If[PrimePowerQ[n], f = FactorInteger[n][[1]]; 2*f[[2]]*n^(2 - 1/f[[2]]), Nothing]; s[1] = 0; Array[s, 200] (* Amiram Eldar, Apr 06 2025 *)

Formula

a(n) = 2 * A025474(n) * A025473(n)^(2*A025474(n) - 1).
A192084(n) = A003415(a(n)).

A230539 a(n) = 3*n*2^(3*n-1).

Original entry on oeis.org

0, 12, 192, 2304, 24576, 245760, 2359296, 22020096, 201326592, 1811939328, 16106127360, 141733920768, 1236950581248, 10720238370816, 92358976733184, 791648371998720, 6755399441055744, 57420895248973824, 486388759756013568, 4107282860161892352
Offset: 0

Views

Author

Bruno Berselli, Oct 23 2013

Keywords

Comments

Arithmetic derivative of 8^n: a(n) = A003415(8^n).
Sum of reciprocals of a(n), for n>0: (2/3)*log(8/7).

Crossrefs

Cf. arithmetic derivative of k^n: A001787 (k=2), A027471 (k=3), A018215 (k=4), A053464 (k=5), A212700 (k=6), A027473 (k=7), this sequence, A230540 (k=9), A085708 (k=10), A081127 (k=11).
Row n=8 of A258997.

Programs

  • Magma
    [3*n*2^(3*n-1): n in [0..20]];
    
  • Maple
    A230539:=n->3*n*2^(3*n-1): seq(A230539(n), n=0..30); # Wesley Ivan Hurt, May 03 2017
  • Mathematica
    Table[3 n 2^(3 n - 1), {n,0,20}]
    LinearRecurrence[{16,-64},{0,12},20] (* Harvey P. Dale, Dec 25 2022 *)
  • PARI
    a(n) = 3*n*2^(3*n-1); \\ Michel Marcus, Oct 23 2013

Formula

G.f.: 12*x/(1-8*x)^2.
a(n) = 12*A053539(n).

A230540 a(n) = 2*n*3^(2*n-1).

Original entry on oeis.org

0, 6, 108, 1458, 17496, 196830, 2125764, 22320522, 229582512, 2324522934, 23245229340, 230127770466, 2259436291848, 22029503845518, 213516729579636, 2058911320946490, 19765548681086304, 189008059262887782, 1801135623563989452, 17110788423857899794
Offset: 0

Views

Author

Bruno Berselli, Oct 23 2013

Keywords

Comments

Arithmetic derivative of 9^n: a(n) = A003415(9^n).
Sum of reciprocals of a(n), for n>0: (3/2)*log(9/8).

Crossrefs

Cf. arithmetic derivative of k^n: A001787 (k=2), A027471 (k=3), A018215 (k=4), A053464 (k=5), A212700 (k=6), A027473 (k=7), A230539 (k=8), this sequence, A085708 (k=10), A081127 (k=11).

Programs

  • Magma
    [2*n*3^(2*n-1): n in [0..20]];
    
  • Mathematica
    Table[2 n 3^(2 n - 1), {n, 0, 20}]
  • PARI
    a(n) = 2*n*3^(2*n-1); \\ Michel Marcus, Oct 23 2013

Formula

G.f.: 6*x/(1-9*x)^2.
a(n) = 6*A053540(n), with A053540(0)=0.

A361608 a(n) = 7^n*(n+1)*(81*n^4+684*n^3+1401*n^2+434*n+40)/40.

Original entry on oeis.org

1, 924, 48804, 1337014, 26622288, 437049228, 6295986235, 82489361052, 1005444707211, 11576481361732, 127278262644918, 1346951022678114, 13803666582387682, 137633164619393268, 1340161331495822661, 12782144706910135480, 119711031072135899781, 1103157160378734314700, 10019811250265958667288
Offset: 0

Views

Author

R. J. Mathar, Mar 17 2023

Keywords

Comments

The sequences A(n,k) = Sum_{j=0..n} Sum_{i=0..j} (-1)^(j-i) * binomial(n,j) * binomial(j,i) * binomial(j+k+(k+1)*i,j+k) are C-sequences for fixed integer k, here A(n,k=5) = a(n).

Crossrefs

Cf. A027471 (k=1), A361609 (k=2), A361610 (k=3).

Programs

  • Mathematica
    LinearRecurrence[{42,-735,6860,-36015,100842,-117649},{1,924,48804,1337014,26622288,437049228},20] (* Harvey P. Dale, May 29 2023 *)
  • Python
    def A361608(n): return 7**n*(n*(n*(n*(n*(81*n + 765) + 2085) + 1835) + 474) + 40)//40 # Chai Wah Wu, Mar 17 2023

Formula

G.f.: ( 1+882*x+10731*x^2-40474*x^3+36015*x^4 ) / (7*x-1)^6 .
a(n) = +42*a(n-1) -735*a(n-2) +6860*a(n-3) -36015*a(n-4) +100842*a(n-5) -117649*a(n-6).
D-finite with recurrence n*(81*n^4+360*n^3-165*n^2-640*n+404)*a(n) -7*(n+1)*(81*n^4+684*n^3+1401*n^2+434*n+40)*a(n-1)=0.

A361609 a(n) = 4^n*(1 + (23/8)*n + (9/8)*n^2).

Original entry on oeis.org

1, 20, 180, 1264, 7808, 44544, 240640, 1249280, 6291456, 30932992, 149159936, 707788800, 3313500160, 15334375424, 70262980608, 319169757184, 1438814044160, 6442450944000, 28673201668096, 126924873531392, 559101662724096, 2451910929940480, 10709243254538240, 46601700831657984
Offset: 0

Views

Author

R. J. Mathar, Mar 17 2023

Keywords

Comments

The sequences A(n,k) = Sum_{j=0..n} Sum_{i=0..j} (-1)^(j-i) * binomial(n,j) *binomial(j,i) * binomial(j+k+(k+1)*i,j+k) are C-sequences for fixed integer k, here A(n,k=2) = a(n).

Crossrefs

Cf. A027471 (k=1), A361610 (k=3), A361608 (k=5).

Programs

  • Mathematica
    LinearRecurrence[{12, -48, 64}, {1, 20, 180}, 25] (* or *)
    A361609[n_] := 4^n (1 + 23/8 n + 9/8 n^2);
    Array[A361609, 25, 0] (* Paolo Xausa, Jan 18 2024 *)
  • Python
    def A361609(n): return (n*(9*n + 23) + 8)<<((n<<1)-3) if n > 1 else 19*n+1 # Chai Wah Wu, Mar 17 2023

Formula

G.f.: ( -1-8*x+12*x^2 ) / (4*x-1)^3.
a(n) = 12*a(n-1) -48*a(n-2) +64*a(n-3).
D-finite with recurrence (-9*n^2-5*n+6)*a(n) +4*(9*n^2+23*n+8)*a(n-1)=0.

A361610 a(n) = 5^n*(n+1)*(4*n^2+14*n+3)/3.

Original entry on oeis.org

1, 70, 1175, 13500, 128125, 1081250, 8421875, 61875000, 434765625, 2949218750, 19443359375, 125195312500, 790283203125, 4904785156250, 29998779296875, 181152343750000, 1081695556640625, 6394958496093750, 37471771240234375, 217819213867187500, 1257038116455078125
Offset: 0

Views

Author

R. J. Mathar, Mar 17 2023

Keywords

Comments

The sequences A(n,k) = Sum_{j=0..n} Sum_{i=0..j} (-1)^(j-i) * binomial(n,j) * binomial(j,i) * binomial(j+k+(k+1)*i,j+k) are C-sequences for fixed integer k, here A(n,k=3) = a(n).

Crossrefs

Cf. A027471 (k=1), A361609 (k=2), A361608 (k=5).

Programs

  • Mathematica
    LinearRecurrence[{20,-150,500,-625},{1,70,1175,13500},30] (* Harvey P. Dale, Aug 29 2024 *)
  • Python
    def A361610(n): return 5**n*(n*(n*(4*n + 18) + 17) + 3)//3 # Chai Wah Wu, Mar 17 2023

Formula

G.f.: (1 + 50*x - 75*x^2) / (5*x - 1)^4.
a(n) = 20*a(n-1) -150*a(n-2) +500*a(n-3) -625*a(n-4).
D-finite with recurrence n*(4*n^2+6*n-7)*a(n) -5*(n+1)*(4*n^2+14*n+3)*a(n-1)=0.

A380651 a(n) = 4^n - n*3^(n-1).

Original entry on oeis.org

1, 3, 10, 37, 148, 619, 2638, 11281, 48040, 203095, 851746, 3544765, 14651452, 60200131, 246114934, 1001997289, 4065384784, 16448074927, 66394953802, 267516917653, 1076266398436, 4324824038683, 17362058273950, 69646979806657, 279215540418808
Offset: 0

Views

Author

Enrique Navarrete, Jan 29 2025

Keywords

Comments

a(n) is the number of words of length n defined on 4 letters where one of the letters is not used or is used any number of times except once.

Examples

			For n=2, the 10 words on {0, 1, 2, 3} that do not use 0 exactly once are 12, 21, 13, 31, 23, 32, 11, 22, 33, 00.
		

Crossrefs

Programs

  • Mathematica
    Table[4^n - n*3^(n - 1), {n, 0, 25}] (* Paolo Xausa, Feb 06 2025 *)

Formula

E.g.f.: exp(3*x)*(exp(x)-x).
From Alois P. Heinz, Jan 29 2025: (Start)
G.f.: -(13*x^2-7*x+1)/((4*x-1)*(3*x-1)^2).
a(n) = A000302(n) - A027471(n+1). (End)
Previous Showing 41-50 of 63 results. Next