A027879
a(n) = Product_{i=1..n} (11^i - 1).
Original entry on oeis.org
1, 10, 1200, 1596000, 23365440000, 3763004112000000, 6666387564654720000000, 129909027758312519942400000000, 27847153692160782464830528512000000000, 65662131721505488121539650946349537280000000000
Offset: 0
-
[1] cat [&*[11^k-1: k in [1..n]]: n in [1..11]]; // Vincenzo Librandi, Dec 24 2015
-
seq(mul(11^i-1,i=1..n),n=0..20; # Robert Israel, Nov 24 2015
-
FoldList[Times,1,11^Range[10]-1] (* Harvey P. Dale, Aug 13 2013 *)
Abs@QPochhammer[11, 11, Range[0, 40]] (* G. C. Greubel, Nov 24 2015 *)
-
a(n)=prod(i=1,n,11^i-1) \\ Anders Hellström, Nov 21 2015
A027880
a(n) = Product_{i=1..n} (12^i - 1).
Original entry on oeis.org
1, 11, 1573, 2716571, 56328099685, 14016177372718235, 41852067359921313500005, 1499635200191700040518673659035, 644815685260091508353787979063721364325, 3327107302821620489265827570792988872583047378075
Offset: 0
-
[1] cat [&*[12^k-1: k in [1..n]]: n in [1..11]]; // Vincenzo Librandi, Dec 24 2015
-
FoldList[Times,1,12^Range[10]-1] (* Harvey P. Dale, Mar 01 2015 *)
Abs@QPochhammer[12, 12, Range[0, 30]] (* G. C. Greubel, Nov 24 2015 *)
-
a(n) = prod(k=1, n, 12^k - 1) \\ Altug Alkan, Nov 25 2015
A053291
Nonsingular n X n matrices over GF(4).
Original entry on oeis.org
1, 3, 180, 181440, 2961100800, 775476766310400, 3251791214634074112000, 218210695042457748180566016000, 234298374547168764346587444978647040000, 4025200069765920285793155323595159699896401920000, 1106437515026051855463365435310419366987397763763798016000000
Offset: 0
-
[1] cat [&*[(4^n - 4^k): k in [0..n-1]]: n in [1..8]]; // Bruno Berselli, Jan 28 2013
-
Table[Product[4^n - 4^k, {k,0,n-1}], {n,0,10}] (* Geoffrey Critzer, Jan 26 2013 *)
-
for(n=0,10, print1(prod(k=0,n-1, 4^n - 4^k), ", ")) \\ G. C. Greubel, May 31 2018
A028692
23-factorial numbers.
Original entry on oeis.org
1, 22, 11616, 141320256, 39547060439040, 254538406080331591680, 37680818974206486508802211840, 128296611269497862923425473853914480640, 10047034036599529256387830050150921763777884979200, 18096242094820543236399273859296273669601076798103392511590400
Offset: 0
Cf.
A005329,
A027871,
A027637,
A027872,
A027873,
A027875,
A027876,
A027877,
A027878,
A027879,
A027880,
A028693,
A028694.
-
FoldList[ #1 (23^#2-1)&, 1, Range[ 20 ] ]
a[n_] := Abs[QPochhammer[23, 23, n]]; Array[a, 10, 0] (* Amiram Eldar, Jul 14 2025 *)
-
a(n) = prod(k = 1, n, 23^k - 1); \\ Amiram Eldar, Jul 14 2025
A028693
24-factorial numbers.
Original entry on oeis.org
1, 23, 13225, 182809175, 60651514035625, 482945140644890444375, 92292253139031982469134515625, 423295781586452233477722435457009484375, 46594416147080909523690749946376478698532878515625, 123093479909646650570543074660375014342475500150254964721484375
Offset: 1
Cf.
A005329,
A027871,
A027637,
A027872,
A027873,
A027875,
A027876,
A027877,
A027878,
A027879,
A027880,
A028692,
A028694.
-
FoldList[ #1 (24^#2-1)&, 1, Range[ 20 ] ]
a[n_] := Abs[QPochhammer[24, 24, n]]; Array[a, 10, 0] (* Amiram Eldar, Jul 14 2025 *)
-
a(n) = prod(k = 1, n, 24^k - 1); \\ Amiram Eldar, Jul 14 2025
A028694
25-factorial numbers.
Original entry on oeis.org
1, 24, 14976, 233985024, 91400166014976, 892579654839833985024, 217914953902301689160166014976, 1330047325845938129350664710839833985024, 202949115880923695556030391039325175289160166014976, 774189437411767935420978172981557217629743778824710839833985024
Offset: 0
Cf.
A005329,
A027871,
A027637,
A027872,
A027873,
A027875,
A027876,
A027877,
A027878,
A027879,
A027880,
A028692,
A028693.
-
FoldList[ #1 (25^#2-1)&, 1, Range[ 20 ] ]
a[n_] := Abs[QPochhammer[25, 25, n]]; Array[a, 10, 0] (* Amiram Eldar, Jul 14 2025 *)
-
a(n) = prod(k = 1, n, 25^k - 1); \\ Amiram Eldar, Jul 14 2025
A263394
a(n) = Product_{i=1..n} (3^i - 2^i).
Original entry on oeis.org
1, 5, 95, 6175, 1302925, 866445125, 1784010512375, 11248186280524375, 215638979183932793125, 12512451767147700321078125, 2190917791975795178520458609375, 1155369543009475708416871245360859375, 1832567448623162714866960405275465241328125
Offset: 1
Cf. sequences of the form Product_{i=1..n}(j^i - 1):
A005329 (j=2),
A027871 (j=3),
A027637 (j=4),
A027872 (j=5),
A027873 (j=6),
A027875 (j=7),
A027876 (j=8),
A027877 (j=9),
A027878 (j=10),
A027879 (j=11),
A027880 (j=12).
Cf. sequences of the form Product_{i=1..n}(j^i - k^1), k>1:
A269576 (j=4, k=3),
A269661 (j=5, k=4).
-
[&*[ 3^k-2^k: k in [1..n] ]: n in [1..16]]; // Vincenzo Librandi, Mar 03 2016
-
A263394:=n->mul(3^i-2^i, i=1..n): seq(A263394(n), n=1..15); # Wesley Ivan Hurt, Mar 02 2016
-
Table[Product[3^i - 2^i, {i, n}], {n, 15}] (* Wesley Ivan Hurt, Mar 02 2016 *)
FoldList[Times,Table[3^i-2^i,{i,15}]] (* Harvey P. Dale, Feb 06 2017 *)
-
a(n) = prod(k=1, n, 3^k-2^k); \\ Michel Marcus, Mar 05 2016
A269576
a(n) = Product_{i=1..n} (4^i - 3^i).
Original entry on oeis.org
1, 7, 259, 45325, 35398825, 119187843775, 1692109818073675, 99792176520894983125, 24195710911432718503470625, 23942309231057283642583777144375, 96180015123706384385790918441966041875
Offset: 1
Cf. sequences of the form Product_{i=1..n}(j^i - 1):
A005329 (j=2),
A027871 (j=3),
A027637 (j=4),
A027872 (j=5),
A027873 (j=6),
A027875 (j=7),
A027876 (j=8),
A027877 (j=9),
A027878 (j=10),
A027879 (j=11),
A027880 (j=12).
Cf. sequences of the form Product_{i=1..n}(j^i - k^1), k>1:
A263394 (j=3, k=2),
A269661 (j=5, k=4).
-
seq(mul(4^i-3^i,i=1..n),n=0..20); # Robert Israel, Jun 01 2023
-
Table[Product[4^i - 3^i, {i, n}], {n, 11}] (* Michael De Vlieger, Mar 07 2016 *)
FoldList[Times,Table[4^n-3^n,{n,20}]] (* Harvey P. Dale, Jul 30 2018 *)
-
a(n) = prod(k=1, n, 4^k-3^k); \\ Michel Marcus, Mar 05 2016
A309327
a(n) = Product_{k=1..n-1} (4^k + 1).
Original entry on oeis.org
1, 1, 5, 85, 5525, 1419925, 1455423125, 5962868543125, 97701601079103125, 6403069829921181503125, 1678532740564688125136703125, 1760070825503098980191468752703125, 7382273863761775568111978346806480703125, 123854010565759745011512941023673583762640703125
Offset: 0
-
[n lt 2 select 1 else (&*[4^j +1: j in [1..n-1]]): n in [0..15]]; // G. C. Greubel, Feb 21 2021
-
Table[Product[4^k + 1, {k, 1, n - 1}], {n, 0, 13}]
Join[{1}, Table[4^(Binomial[n,2])*QPochhammer[-1/4, 1/4, n-1], {n,15}]] (* G. C. Greubel, Feb 21 2021 *)
-
a(n) = prod(k=1, n-1, 4^k + 1); \\ Michel Marcus, Jun 06 2020
-
from sage.combinat.q_analogues import q_pochhammer
[1]+[4^(binomial(n,2))*q_pochhammer(n-1, -1/4, 1/4) for n in (1..15)] # G. C. Greubel, Feb 21 2021
A269661
a(n) = Product_{i=1..n} (5^i - 4^i).
Original entry on oeis.org
1, 9, 549, 202581, 425622681, 4907003889249, 302963327126122509, 98490045052104040328301, 166544794872251942218390753281, 1451779137596368920662880897497387769, 64798450159010700654830227323217753649135349
Offset: 1
Cf. sequences of the form Product_{i=1..n}(j^i - 1):
A005329 (j=2),
A027871 (j=3),
A027637 (j=4),
A027872 (j=5),
A027873 (j=6),
A027875 (j=7),
A027876 (j=8),
A027877 (j=9),
A027878 (j=10),
A027879 (j=11),
A027880 (j=12).
Cf. sequences of the form Product_{i=1..n}(j^i - k^1), k>1:
A263394 (j=3, k=2),
A269576 (j=4, k=3).
-
[&*[ 5^k-4^k: k in [1..n] ]: n in [1..16]]; // Vincenzo Librandi, Mar 03 2016
-
Table[Product[5^i - 4^i, {i, n}], {n, 15}] (* Vincenzo Librandi, Mar 03 2016 *)
Table[5^(Binomial[n + 1, 2]) *QPochhammer[4/5, 4/5, n], {n, 1, 20}] (* G. C. Greubel, Mar 05 2016 *)
FoldList[Times,Table[5^n-4^n,{n,15}]] (* Harvey P. Dale, Aug 28 2018 *)
-
a(n) = prod(k=1, n, 5^k-4^k); \\ Michel Marcus, Mar 05 2016
Comments