cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 45 results. Next

A230812 Smallest squarefree side lengths of primitive integer Soddyian triangles.

Original entry on oeis.org

5, 13, 41, 61, 85, 113, 145, 181, 221, 265, 313, 365, 421, 481, 545, 613, 685, 761, 1013, 1105, 1201, 1301, 1405, 1513, 1741, 1861, 1985, 2113, 2245, 2381, 2521, 2665, 2813, 2965, 3121, 3281, 3445, 3613, 3785, 3961, 4141, 4513, 4705, 5101, 5305, 5513, 5941
Offset: 1

Views

Author

Frank M Jackson, Oct 30 2013

Keywords

Comments

A Soddyian triangle is a triangle whose outer Soddy circle has degenerated into a straight line. Its side lengths are related by the equation 1/sqrt(s-c) = 1/sqrt(s-b)+1/sqrt(s-a) where the sides a <= b <= c and s is the semiperimeter. It is Heronian. The smallest side length of a primitive Soddyian triangle is given as a = n^2((m+n)^2+m^2) for integers m >= n > 0 with GCD(m, n) = 1. If this side length is squarefree, then n = 1 and (m+1)^2+m^2 has to be squarefree. a(n) is the ordered sequence of squarefree integers t of the form t = (m+1)^2+m^2. Note that t uniquely determines the primitive Soddyian triple whenever the smallest side length is squarefree.

Examples

			a(3)=41 because the triangle with sides (41, 416, 425) is a primitive Soddyian triangles, 41 is squarefree and is the 3rd occurrence of such a squarefree integer.
		

Crossrefs

Supersequence of A027862.

Programs

  • Mathematica
    lst = {}; Do[If[SquareFreeQ[(m+1)^2+m^2], AppendTo[lst, (m+1)^2+m^2]], {m, 1, 100}]; lst
  • PARI
    select(issquarefree, vector(1000,m,(m+1)^2+m^2)) \\ Charles R Greathouse IV, Oct 31 2013

Formula

Squarefree integers of the form (m+1)^2+m^2 for any integer m > 0.

A385238 Numbers k such that A224787(k) - k is a square.

Original entry on oeis.org

8, 16, 20, 25, 95, 169, 221, 234, 295, 312, 323, 410, 543, 1027, 1681, 3071, 3419, 3721, 4183, 4352, 6649, 7448, 7979, 8188, 9047, 9200, 10108, 11203, 12769, 15732, 16240, 20303, 22819, 25351, 26291, 28769, 32761, 33728, 42880, 51198, 51338, 52206, 53613, 55303, 56800, 63731, 65567, 71531, 77550
Offset: 1

Views

Author

Will Gosnell and Robert Israel, Jul 28 2025

Keywords

Comments

Numbers k such that the sum of the cubes of the prime factors of k, counted with multiplicity, is k plus a square.
Includes p^2 for p in A027862.

Examples

			a(3) = 20 = 2^2 * 5 is a term because 2*2^3 + 5^3 - 20 = 121 is a square.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local t;
       issqr(add(t[1]^3*t[2], t=ifactors(n)[2]) - n)
    end proc:
    select(filter, [$1..10^5]);

A089619 a(n) = greatest prime factor of n^2 + (n+1)^2 for n >= 1.

Original entry on oeis.org

5, 13, 5, 41, 61, 17, 113, 29, 181, 17, 53, 313, 73, 421, 37, 109, 613, 137, 761, 29, 37, 1013, 17, 1201, 1301, 281, 89, 13, 1741, 1861, 397, 2113, 449, 2381, 2521, 41, 97, 593, 3121, 193, 53, 3613, 757, 233, 101, 173, 4513, 941, 29, 5101, 1061, 149, 229, 457, 101
Offset: 1

Views

Author

Cino Hilliard, Dec 31 2003

Keywords

Examples

			2*7^2 - 2*7 + 1 = 85 = 5*17, so a(7) = 17.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := FactorInteger[n^2 + (n+1)^2][[-1, 1]]; Array[a, 60] (* Amiram Eldar, Oct 29 2024 *)
  • PARI
    xnpym1n(m) = { for(n=1,m, y = n^2+(n+1)^2; f = factor(y); l = length(component(f,1)); v = component(component(f,1),l); print1(v","); ) }

Formula

a(n) = A006530(A001844(n)).

Extensions

Edited by Ray Chandler, Jan 03 2004
Offset corrected by Georg Fischer, May 27 2024

A093576 Smallest prime of the form n^j+(n+1)^k, with j,k integer, min(j,k)>1.

Original entry on oeis.org

5, 13, 43, 41, 61, 379, 113, 593, 181, 14741, 16369, 313, 2393, 421, 3631, 83777, 613, 105337, 761, 9661, 205129, 1013, 12743, 1201, 1301, 20359, 1146097, 615497, 1741, 1861, 1049537, 2113, 2522257, 2381, 2521, 51949, 3959297, 56393, 3121, 2561681
Offset: 1

Views

Author

Hugo Pfoertner, Apr 01 2004

Keywords

Examples

			a(3)=43 because 3^3+4^2=43 is prime, whereas 3^2+4^2=25 is composite.
		

Crossrefs

Cf. A027862 primes of the form n^2+(n+1)^2, A093574, A093575.

A158526 n and (1 + 2*n + 2*n^2) are primes.

Original entry on oeis.org

2, 5, 7, 17, 19, 29, 47, 79, 97, 109, 137, 139, 149, 157, 167, 199, 229, 347, 349, 389, 409, 467, 479, 547, 577, 599, 709, 719, 757, 857, 929, 937, 967, 1039, 1069, 1087, 1187, 1229, 1259, 1399, 1409, 1447, 1559, 1579, 1597, 1607, 1657, 1697, 1699, 1709
Offset: 1

Views

Author

Zak Seidov, Mar 20 2009

Keywords

Comments

Numbers n such that A048395(n) is semiprime, or A048395(n)/n is prime.
Or, primes in A027861. Also, (1+2*n+2*n^2) are in A027862. - Zak Seidov, Sep 19 2015

Examples

			A048395(2)=26=2*13, A048395(5)=305=5*61, A048395(7)=791=7*113.
		

Crossrefs

Cf. A048395 (sum of consecutive nonsquares), A001358 (semiprimes).

Programs

A180263 Odd k such that (k^2 + 1)/2 is not prime.

Original entry on oeis.org

1, 7, 13, 17, 21, 23, 27, 31, 33, 37, 41, 43, 47, 53, 55, 57, 63, 67, 73, 75, 77, 81, 83, 87, 89, 91, 93, 97, 99, 103, 105, 107, 109, 111, 113, 115, 117, 119, 123, 125, 127, 129, 133, 135, 137, 143, 147, 149, 151, 153, 155, 157, 161, 163, 167, 173, 177, 179, 183, 185
Offset: 1

Views

Author

Alex Meiburg, Aug 21 2010

Keywords

Examples

			a(2)=7: (7^2 + 1)/2 = 25, which is not prime, so 7 is in the sequence.
(9^2 + 1)/2 = 41, which is prime, so 9 is not in the sequence.
		

Crossrefs

Cf. A027862 (primes of the form (n^2+1)/2).

Programs

  • Magma
    [ n: n in [1..200 by 2] | not IsPrime((n^2+1) div 2) ];
    
  • Mathematica
    a={};For[i=1,i<100,i=i+2,If[PrimeQ[(i^2+1)/2],0,AppendTo[a,i]]]Print[a]
    Select[Range[1,201,2],!PrimeQ[(#^2+1)/2]&] (* Harvey P. Dale, Jan 07 2016 *)
  • PARI
    isok(n) = (n%2) && !isprime((n^2 + 1)/2); \\ Michel Marcus, Nov 23 2018

Extensions

More terms from Vincenzo Librandi, Nov 18 2010
Example clarified by Harvey P. Dale, Jan 07 2016

A218213 Number of n-digit primes representable as sums of consecutive squares.

Original entry on oeis.org

1, 4, 13, 30, 69, 187, 519, 1401, 3889, 10861, 31640, 90735
Offset: 1

Views

Author

Martin Renner, Oct 23 2012

Keywords

Comments

There are no common representations of two, three or six squares for n < 13, so
a(n) = A218207(n) + A218209(n) + A218211(n); n < 13.

Crossrefs

Programs

  • Mathematica
    nn = 8; nMax = 10^nn; t = Table[0, {nn}]; Do[k = n; s = 0; While[s = s + k^2; s <= nMax, If[PrimeQ[s], t[[Ceiling[Log[10, s]]]]++];  k++], {n, Sqrt[nMax]}]; t (* T. D. Noe, Oct 23 2012 *)

Formula

a(n) = A218214(n) - A218213(n-1).

A227412 Primes of the form n^3 + (n+1)^3 + 2.

Original entry on oeis.org

11, 37, 191, 857, 2333, 3061, 4943, 6121, 9011, 22817, 33203, 89533, 105527, 114193, 341993, 421381, 536771, 931087, 1005041, 1294561, 1386443, 1583047, 1911493, 2416061, 4866481, 5086811, 5199427, 5429621, 7376141, 7814207, 8903071, 9399097, 9739811, 9913213
Offset: 1

Views

Author

K. D. Bajpai, Sep 22 2013

Keywords

Comments

Primes which are sum of two consecutive cubes plus 2.

Examples

			a(2)=37: k^3+(k+1)^3+2= 2^3+3^3+2= 8+27+2= 37 which is prime.
a(3)=191: k^3+(k+1)^3+2= 4^3+5^3+2= 64+125+2= 191 which is prime.
		

Crossrefs

Programs

  • Maple
    KD:= proc() local a; a:= (k)^3+(k+1)^3+2; if isprime(a) then RETURN(a): fi;end: seq(KD(),k=1..500);
  • Mathematica
    Select[Table[(x^3+(x+1)^3+2), {x, 1000}], PrimeQ]

Formula

Primes of the form 2*n^3 + 3*n^2 + 3*n + 3.

A275530 Smallest positive integer m such that (m^(2^n) + 1)/2 is prime.

Original entry on oeis.org

3, 3, 3, 9, 3, 3, 3, 113, 331, 513, 827, 799, 3291, 5041, 71, 220221, 23891, 11559, 187503, 35963
Offset: 0

Views

Author

Walter Kehowski, Jul 31 2016

Keywords

Comments

The terms of this sequence with n > 11 correspond to probable primes which are too large to be proven prime currently. - Serge Batalov, Apr 01 2018
a(15) is a statistically significant outlier; the sequence (m^(2^15)+1)/2 may require a double-check with software that is not GWNUM-based. - Serge Batalov, Apr 01 2018

Examples

			a(7) = 113 since 113 is the smallest positive integer m such that (m^(2^7)+1)/2 is prime.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local m; for m by 2
          while not isprime((m^(2^n)+1)/2) do od; m
        end:
    seq(a(n), n=0..8);
  • Mathematica
    Table[m = 1; While[! PrimeQ[(m^(2^n) + 1)/2], m++]; m, {n, 0, 9}] (* Michael De Vlieger, Sep 23 2016 *)
  • PARI
    a(n) = {my(m = 1); while (! isprime((m^(2^n)+1)/2), m += 2); m;} \\ Michel Marcus, Aug 01 2016
    
  • Python
    from sympy import isprime
    def a(n):
      m, pow2 = 1, 2**n
      while True:
        if isprime((m**pow2 + 1)//2): return m
        m += 2
    print([a(n) for n in range(9)]) # Michael S. Branicky, Mar 03 2021

Extensions

a(13)-a(14) from Robert Price, Sep 23 2016
a(15) from Serge Batalov, Mar 29 2018
a(16) from Serge Batalov, Mar 30 2018
a(17) from Serge Batalov, Apr 01 2018
a(18)-a(19) from Ryan Propper, Aug 16 2022. These correspond to 1382288- and 2388581-digit PRPs, respectively, found using an exhaustive search with Jean Penne's LLR2.

A293958 Smallest odd prime divisor of (2n+1)^2 + 1.

Original entry on oeis.org

5, 13, 5, 41, 61, 5, 113, 5, 181, 13, 5, 313, 5, 421, 13, 5, 613, 5, 761, 29, 5, 1013, 5, 1201, 1301, 5, 17, 5, 1741, 1861, 5, 2113, 5, 2381, 2521, 5, 29, 5, 3121, 17, 5, 3613, 5, 17, 41, 5, 4513, 5, 13, 5101, 5, 37, 5, 13, 61, 5, 17, 5, 73, 7321, 5, 13, 5, 53, 8581, 5, 13, 5, 9661, 9941, 5
Offset: 1

Views

Author

N. J. A. Sloane, Nov 04 2017, following a suggestion from Zoran Sunic

Keywords

Comments

If the map "x -> smallest odd prime divisor of n^2+1" is iterated, does it always terminate in the 2-cycle (5 <-> 13)? - Zoran Sunic, Oct 25 2017
A027862 is a subsequence. - David A. Corneth, Nov 04 2017

Crossrefs

A bisection of A125256. Cf. A027862, A069894, A078701, A256970.

Programs

  • Mathematica
    sod[n_]:=With[{fi=FactorInteger[n]},If[fi[[1,1]]==2,fi[[2,1]],fi[1,1]]]; sod/@(Range[3,151,2]^2+1) (* Harvey P. Dale, Dec 23 2023 *)
  • PARI
    a(n) = factor((2*n+1)^2 + 1)[2,1]; \\ Michel Marcus, Nov 04 2017

Formula

a(n) = A078701(A069894(n)). - Michel Marcus, Nov 04 2017
Previous Showing 21-30 of 45 results. Next