cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 58 results. Next

A141580 Number of unlabeled non-mating graphs with n vertices.

Original entry on oeis.org

0, 1, 2, 6, 18, 78, 456, 4299, 68754, 1990286, 106088988, 10454883132, 1904236651216, 641859005526860, 401547534010157680, 467956331904669136874, 1019785644052109276678788, 4171197546082606538129623140
Offset: 1

Views

Author

Tanya Khovanova, Aug 19 2008

Keywords

Comments

a(n) is the difference between A000088 (number of graphs on n unlabeled nodes) and A004110 (number of n-node graphs without endpoints)
A non-mating graph has two vertices with an identical set of neighbors.
The adjacency matrix of a non-mating graph is degenerate.
Also the number of unlabeled graphs with n vertices and at least one endpoint. - Gus Wiseman, Sep 11 2019

Examples

			A cycle with 4 vertices is a non-mating graph. In the standard ordering of vertices, vertices 1 and 3 are both connected to vertices 2 an 4, thus having an identical sets of neighbors.
From _Gus Wiseman_, Sep 11 2019: (Start)
Non-isomorphic representatives of the a(2) = 1 through a(5) non-mating graph edge-sets:
  {12}  {12}     {12}           {12}
        {13,23}  {12,34}        {12,34}
                 {13,23}        {13,23}
                 {13,24,34}     {12,35,45}
                 {14,24,34}     {13,24,34}
                 {14,23,24,34}  {14,24,34}
                                {12,34,35,45}
                                {13,24,35,45}
                                {14,23,24,34}
                                {14,25,35,45}
                                {15,25,35,45}
                                {12,25,34,35,45}
                                {14,25,34,35,45}
                                {15,23,24,35,45}
                                {15,25,34,35,45}
                                {13,24,25,34,35,45}
                                {15,24,25,34,35,45}
                                {15,23,24,25,34,35,45}
(End)
		

Crossrefs

The labeled version is A327379.

Programs

  • Mathematica
    k = {}; For[i = 1, i < 8, i++, lg = ListGraphs[i] ; len = Length[lg]; k = Append[k, Length[Select[Range[len], Length[Union[ToAdjacencyMatrix[lg[[ # ]]]]] != i &]]]]; k

Formula

a(n) = A000088(n) - A004110(n).

Extensions

Extended by R. J. Mathar, Sep 12 2008

A168361 Period 2: repeat 2, -1.

Original entry on oeis.org

2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1, 2, -1
Offset: 1

Views

Author

Klaus Brockhaus, Nov 23 2009

Keywords

Comments

Interleaving of A007395 and -A000012.
Binomial transform of 2 followed by a signed version of A007283; also binomial transform of a signed version of A042950.
Second binomial transform of a signed version of A007051 without initial term 1.
Inverse binomial transform of 2 followed by A000079.
A028242 without first two terms gives partial sums.

Crossrefs

Cf. A168330 (repeat 3, -2), A007395 (all 2's sequence), A000012 (all 1's sequence), (A007283 3*2^n), A042950, A007051 ((3^n+1)/2), A000079 (powers of 2), A028242 (follow n+1 by n).

Programs

  • Magma
    &cat[ [2, -1]: n in [1..42] ];
    [ n eq 1 select 2 else -Self(n-1)+1: n in [1..84] ];
    
  • Magma
    &cat[[2,-1]^^40]; // Vincenzo Librandi, Jul 20 2016
  • Mathematica
    PadRight[{},120,{2,-1}] (* Harvey P. Dale, Jan 04 2015 *)
    Table[(1 - 3 (-1)^n)/2, {n, 120}] (* or *)
    Rest@ CoefficientList[Series[x (2 - x)/((1 - x) (1 + x)), {x, 0, 120}], x] (* Michael De Vlieger, Jul 19 2016 *)
  • PARI
    a(n)=2-n%2*3 \\ Charles R Greathouse IV, Jul 13 2016
    

Formula

a(n) = (1 - 3*(-1)^n)/2.
a(n) = -a(n-1) + 1 for n > 1; a(1) = 2.
a(n) = a(n-2) for n > 2; a(1) = 2, a(2) = -1.
a(n+1) - a(n) = 3*(-1)^n.
G.f.: x*(2 - x)/((1-x)*(1+x)).
E.g.f.: (1/2)*(-1 + exp(x))*(3 + exp(x))*exp(-x). - G. C. Greubel, Jul 19 2016

Extensions

G.f. adapted to the offset by Bruno Berselli, Apr 01 2011

A327370 Number of labeled simple graphs with n vertices and exactly n - 1 endpoints (vertices of degree 1).

Original entry on oeis.org

0, 1, 0, 6, 4, 50, 66, 532, 1016, 6876, 16750, 104456, 303612, 1821976, 6067166, 35857200, 133160176, 785514512, 3192117966, 18948962656, 83099447300, 498931946016, 2336474411062, 14234346694976, 70598633745576, 437304764440000, 2282139344678726, 14390600621415552
Offset: 0

Views

Author

Gus Wiseman, Sep 04 2019

Keywords

Comments

Graphs consist of zero or more paths on two nodes each and either a single isolated node or a star with two or more peripheral nodes. - Andrew Howroyd, Sep 05 2019

Examples

			The a(4) = 4 edge-sets:
  {12,13,14}
  {12,23,24}
  {13,23,34}
  {14,24,34}
		

Crossrefs

Column k = n - 1 of A327369.
The unlabeled version is A028242.

Programs

  • Maple
    f:= gfun:-rectoproc({(n-1)*(n-2)*a(n)-n*(n-3)*(n-2)*a(n-1)-n*(n-1)^2*a(n-2)+(2*n-7)*n*(n-1)*(n-2)*a(n-3)-n*(n-1)*(n-2)*(n-3)*(n-4)*a(n-5)=0, a(0)=0, a(1)=1, a(2)=0, a(3)=6, a(4)=4},a(n),remember):
    map(f, [$0..40]); # Robert Israel, Sep 06 2019
  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Count[Length/@Split[Sort[Join@@#]],1]==n-1&]],{n,0,5}]
    With[{nn=30},CoefficientList[Series[x Exp[x^2/2](Exp[x]-x),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Apr 28 2022 *)
  • PARI
    seq(n)={Vec(serlaplace(x*exp(x^2/2 + O(x^n))*(exp(x + O(x^n))-x)), -(n+1))} \\ Andrew Howroyd, Sep 05 2019

Formula

E.g.f.: x*exp(x^2/2)*(exp(x) - x). - Andrew Howroyd, Sep 05 2019
(n-1)*(n-2)*a(n) - n*(n-3)*(n-2)*a(n-1) - n*(n-1)^2*a(n-2) + (2*n-7)*n*(n-1)*(n-2)*a(n-3) - n*(n-1)*(n-2)*(n-3)*(n-4)*a(n-5) = 0. - Robert Israel, Sep 06 2019

Extensions

Terms a(8) and beyond from Andrew Howroyd, Sep 05 2019

A008624 Expansion of g.f. (1 + x^3)/((1 - x^2)*(1 - x^4)) = (1 - x + x^2)/((1 + x)*(1 - x)^2*(1 + x^2)).

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 2, 2, 3, 2, 3, 3, 4, 3, 4, 4, 5, 4, 5, 5, 6, 5, 6, 6, 7, 6, 7, 7, 8, 7, 8, 8, 9, 8, 9, 9, 10, 9, 10, 10, 11, 10, 11, 11, 12, 11, 12, 12, 13, 12, 13, 13, 14, 13, 14, 14, 15, 14, 15, 15, 16, 15, 16, 16, 17
Offset: 0

Views

Author

Keywords

Comments

Molien series of 2-dimensional representation of group of order 16 over GF(3).

References

  • D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 107.

Crossrefs

Essentially the same as A059169.

Programs

  • Maple
    f := x -> (1+x^3)/((1-x^2)*(1-x^4)): seq(coeff(series(f(x), x, n+1), x, n), n=0..64);
    a := n -> floor(n/4) + ((n mod 2 + 1 - floor((n mod 4)/3)) mod 2): seq(a(n), n=0..64); # Johannes W. Meijer, Oct 08 2013
  • Mathematica
    CoefficientList[Series[(1 + x^3) / (1 - x^2) / (1 - x^4), {x, 0, 70}], x] (* Vincenzo Librandi, Aug 15 2013 *)
    LinearRecurrence[{1,0,0,1,-1},{1,0,1,1,2},70] (* Harvey P. Dale, Sep 27 2024 *)
  • PARI
    a(n) = (3 + 3*(-1)^n + (1-I)*(-I)^n + (1+I)*I^n + 2*n) / 8 \\ Colin Barker, Oct 15 2015
    
  • PARI
    my(x='x+O('x^100)); Vec((1+x^3)/((1-x^2)*(1-x^4))) \\ Altug Alkan, Dec 24 2015

Formula

From Reinhard Zumkeller, Aug 05 2005: (Start)
a(n) = floor(n/4) + ((n mod 2 + 1 - floor((n mod 4)/3)) mod 2).
a(n) = A110654(A028242(n)). (End)
a(n) = (3 + 3*(-1)^n + (1-i)*(-i)^n + (1+i)*i^n + 2*n) / 8 where i = sqrt(-1). - Colin Barker, Oct 15 2015
a(n) = (2*n+3+2*cos(n*Pi/2)+3*cos(n*Pi)-2*sin(n*Pi/2))/8. - Wesley Ivan Hurt, Oct 01 2017
E.g.f.: (cos(x) + (3 + x)*cosh(x) - sin(x) + x*sinh(x))/4. - Stefano Spezia, Jan 03 2023

Extensions

Replaced x^2 three times with x in the generating function (un-aerated). - R. J. Mathar, Oct 23 2008

A076736 Let u(1) = u(2) = u(3) = 2, u(n) = (1 + u(n-1)*u(n-2))/u(n-3); then a(n) is the denominator of u(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 4, 2, 8, 4, 16, 8, 32, 16, 64, 32, 128, 64, 256, 128, 512, 256, 1024, 512, 2048, 1024, 4096, 2048, 8192, 4096, 16384, 8192, 32768, 16384, 65536, 32768, 131072, 65536, 262144, 131072, 524288, 262144, 1048576, 524288, 2097152
Offset: 1

Views

Author

Benoit Cloitre, Nov 24 2002

Keywords

Comments

The sequence 1,4,2,8,4,... has g.f. (1+4*x)/(1-2*x^2) and a(n) = 2^(n/2)*(1+2*sqrt(2) + (1-2*sqrt(2))*(-1)^n)/2. - Paul Barry, Apr 26 2004
The sequence 2,1,4,2,8,... has a(n) = 2^(n/2)*(1+2*sqrt(2)-(1-2*sqrt(2))*(-1)^n)/(2*sqrt(2)) and is essentially the pair-reversal of A016116. - Paul Barry, Apr 26 2004

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,2},{1,1,1,2,1},50] (* Harvey P. Dale, Aug 25 2015 *)

Formula

For n > 4, a(n) = 2^A028242(n-4).
From Colin Barker, Oct 14 2014: (Start)
For n > 5, a(n) = 2*a(n-2).
G.f.: x*(x-1)*(x^3+x^2+2*x+1) / (2*x^2-1). (End)

Extensions

More terms from Paul Barry, Apr 26 2004

A051263 Expansion of 1/((1-x)*(1-x^3)^2*(1-x^5)).

Original entry on oeis.org

1, 1, 1, 3, 3, 4, 7, 7, 9, 13, 14, 17, 22, 24, 28, 35, 38, 43, 52, 56, 63, 74, 79, 88, 101, 108, 119, 134, 143, 156, 174, 185, 200, 221, 234, 252, 276, 291, 312, 339, 357, 381, 411, 432, 459, 493, 517, 547, 585, 612, 646, 688, 718, 756, 802, 836, 878, 928, 966
Offset: 0

Views

Author

Keywords

Comments

A two-way infinite sequences which is palindromic (up to sign). - Michael Somos, Mar 21 2003

Crossrefs

Programs

  • PARI
    {a(n) = if( n<-11, -a(-12 - n), if( n<0, 0, polcoeff( 1 / ((1 - x) * (1 - x^3)^2 * (1 - x^5)) + x * O(x^n),n)))} /* Michael Somos, Mar 21 2003 */

Formula

G.f.: 1 / ((1 - x) * (1 - x^3)^2 * (1 - x^5)).
a(-12 - n) = -a(n). a(n) = a(n-1) + 2*a(n-3) - 2*a(n-4) + a(n-5) - 2*a(n-6) + a(n-7) - 2*a(n-8) + 2*a(n-9) + a(n-11) - a(n-12). - Michael Somos, Mar 21 2003
A029153(n) = a(floor(n/2) - mod(n,2)) = a(A028242(n - 2)). - Michael Somos, Mar 21 2003
a(n) = 1 + [(n mod 15)=6] + floor((n^3+18*n^2+(87+30*[(n mod 3)=0])*n)/270) where [] is Iverson bracket. - Hoang Xuan Thanh, Jun 06 2025

A063942 Follow k with k-1 and k-2.

Original entry on oeis.org

1, 0, -1, 2, 1, 0, 3, 2, 1, 4, 3, 2, 5, 4, 3, 6, 5, 4, 7, 6, 5, 8, 7, 6, 9, 8, 7, 10, 9, 8, 11, 10, 9, 12, 11, 10, 13, 12, 11, 14, 13, 12, 15, 14, 13, 16, 15, 14, 17, 16, 15, 18, 17, 16, 19, 18, 17, 20, 19, 18, 21, 20, 19, 22, 21, 20, 23, 22, 21, 24, 23, 22, 25, 24, 23, 26, 25, 24, 27, 26, 25, 28, 27, 26, 29, 28, 27, 30, 29, 28, 31, 30, 29, 32
Offset: 0

Views

Author

Jason Earls, Sep 01 2001

Keywords

Crossrefs

Cf. A028242.

Programs

  • Mathematica
    LinearRecurrence[{1, 0, 1, -1}, {1, 0, -1, 2}, 100] (* Amiram Eldar, Oct 04 2022 *)
  • PARI
    a(n) = (n\3)-(n%3)+1

Formula

G.f.: ( 1-x^2+2*x^3-x ) / ( (1+x+x^2)*(x-1)^2 ). - R. J. Mathar, Jul 14 2015
a(3n) = n+1. a(3n+1) = n. a(3n+2) = n-1. - R. J. Mathar, Jan 10 2017
a(n) = (3*n-3-12*cos(2*(n-5)*Pi/3)+4*sqrt(3)*sin(2*(n-5)*Pi/3))/9. - Wesley Ivan Hurt, Sep 29 2017
E.g.f.: exp(x)*(x - 1)/3 + 4*exp(-x/2)*(3*cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2))/9. - Stefano Spezia, Oct 02 2022
Sum_{n>=6} (-1)^n/a(n) = 3*(log(2)-1/2). - Amiram Eldar, Oct 04 2022

A209578 Triangle of coefficients of polynomials v(n,x) jointly generated with A209577; see the Formula section.

Original entry on oeis.org

1, 3, 1, 5, 3, 1, 9, 8, 4, 1, 15, 19, 13, 5, 1, 25, 41, 36, 19, 6, 1, 41, 84, 90, 60, 26, 7, 1, 67, 165, 210, 169, 92, 34, 8, 1, 109, 315, 465, 439, 287, 133, 43, 9, 1, 177, 588, 990, 1073, 818, 454, 184, 53, 10, 1, 287, 1079, 2043, 2502, 2178, 1405, 681, 246
Offset: 1

Views

Author

Clark Kimberling, Mar 11 2012

Keywords

Comments

Alternating row sums: 1,0,2,1,3,2,4,3,5,4,... (A028242).
For a discussion and guide to related arrays, see A208510.

Examples

			First five rows:
1
1...1
3...2....1
5...6....3....1
9...13...10...4...1
First three polynomials v(n,x): 1, 1 + x , 3 + 2x + x^2.
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
    v[n_, x_] := (x + 1)*u[n - 1, x] + v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]   (* A209577 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]   (* A209578 *)

Formula

u(n,x)=x*u(n-1,x)+v(n-1,x),
v(n,x)=(x+1)*u(n-1,x)+v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.

A210871 Triangle of coefficients of polynomials v(n,x) jointly generated with A210870; see the Formula section.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 3, 2, 5, 1, 2, 7, 3, 8, 1, 4, 5, 15, 5, 13, 1, 3, 12, 10, 30, 8, 21, 1, 5, 9, 31, 20, 58, 13, 34, 1, 4, 18, 22, 73, 38, 109, 21, 55, 1, 6, 14, 54, 51, 162, 71, 201, 34, 89, 1, 5, 25, 40, 145, 111, 344, 130, 365, 55, 144, 1, 7, 20, 85, 105, 361, 233
Offset: 1

Views

Author

Clark Kimberling, Mar 29 2012

Keywords

Comments

Row n, for n>2, starts with 1 and A028242(n) and ends with F(n-1) and F(n+1), where F=A000045 (Fibonacci numbers).
Row sums: A001045
Alternating row sums: A077925
For a discussion and guide to related arrays, see A208510.

Examples

			First six rows:
1
1...2
1...1...3
1...3...2....5
1...2...7....3....8
1...4...5....15...5...13
First three polynomials v(n,x): 1, 1 + 2x, 1 + x + 3x^2
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 14;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := (x + 1)*u[n - 1, x] + (x - 1)*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A210870 *)
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A210871 *)
    Table[u[n, x] /. x -> 1, {n, 1, z}]  (* A000975 *)
    Table[v[n, x] /. x -> 1, {n, 1, z}]  (* A001045 *)
    Table[u[n, x] /. x -> -1, {n, 1, z}] (* A113954 *)
    Table[v[n, x] /. x -> -1, {n, 1, z}] (* A077925 *)

Formula

u(n,x)=u(n-1,x)+x*v(n-1,x),
v(n,x)=(x+1)*u(n-1,x)+(x-1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.

A373272 Triangle read by rows: T(n,k) = sum of all distinct multiplicities in the integer partitions of n with k parts.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 3, 3, 4, 1, 2, 6, 4, 5, 1, 4, 7, 6, 5, 6, 1, 3, 10, 11, 10, 6, 7, 1, 5, 11, 16, 14, 12, 7, 8, 1, 4, 15, 20, 22, 14, 14, 8, 9, 1, 6, 16, 26, 28, 29, 20, 16, 9, 10, 1, 5, 20, 34, 41, 40, 34, 23, 18, 10, 11, 1, 7, 22, 42, 50, 54, 44, 35, 26, 20, 11, 12, 1, 6, 26, 52, 69, 75, 68, 54, 44, 29, 22, 12, 13
Offset: 1

Views

Author

Olivier Gérard, May 29 2024

Keywords

Examples

			Array begins:
  1;
  1, 2;
  1, 1,  3;
  1, 3,  3,  4;
  1, 2,  6,  4,  5;
  1, 4,  7,  6,  5,  6;
  1, 3, 10, 11, 10,  6,  7;
  1, 5, 11, 16, 14, 12,  7,  8;
  1, 4, 15, 20, 22, 14, 14,  8, 9;
  1, 6, 16, 26, 28, 29, 20, 16, 9, 10;
  ...
T(6,3) = 7 because the partitions of 6 into 3 parts are 4+1+1, 3+2+1, 2+2+2,
  the multiplicities are (1,2), (1,1,1), (3),
  the distinct multiplicities are respectively (1,2), (1), (3),
  contributing 3+1+3 = 7.
		

Crossrefs

Columns k=1-2 give: A057427, A028242.
Main diagonal gives A000027.
Row sums are A373273.
T(2n,n) gives A373104.

Programs

  • Mathematica
    Flatten[Table[
      Plus @@@
       Table[Map[Plus @@ Union[Length /@ Split[#]] &,
         IntegerPartitions[n, {k}]], {k, 1, n}], {n, 1, 20}]]
Previous Showing 21-30 of 58 results. Next