A052534
Expansion of (1-x)*(1+x)/(1-2*x-x^2+x^3).
Original entry on oeis.org
1, 2, 4, 9, 20, 45, 101, 227, 510, 1146, 2575, 5786, 13001, 29213, 65641, 147494, 331416, 744685, 1673292, 3759853, 8448313, 18983187, 42654834, 95844542, 215360731, 483911170, 1087338529, 2443227497, 5489882353, 12335653674
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
G.f. = 1 + 2*x + 4*x^2 + 9*x^3 + 20*x^4 + 45*x^5 + 101*x^6 + 227*x^7 + 510*x^8 + ... - _Michael Somos_, Dec 12 2023
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Jean-Luc Baril, Rigoberto Flórez, and José L. Ramírez, Counting symmetric and asymmetric peaks in motzkin paths with air pockets, Univ. Bourgogne (France, 2023).
- Nicolas Bělohoubek and Antonín Slavík, L-Tetromino Tilings and Two-Color Integer Compositions, Univ. Karlova (Czechia, 2025). See p. 10.
- C. P. de Andrade, J. P. de Oliveira Santos, E. V. P. da Silva and K. C. P. Silva, Polynomial Generalizations and Combinatorial Interpretations for Sequences Including the Fibonacci and Pell Numbers, Open Journal of Discrete Mathematics, 2013, 3, 25-32 doi:10.4236/ojdm.2013.31006. - From _N. J. A. Sloane_, Feb 20 2013
- E. S. Egge, Restricted 3412-Avoiding Involutions: Continued Fractions, Chebyshev Polynomials and Enumerations, arXiv:math/0307050 [math.CO], 2003, sec. 8.
- Rigoberto Flórez and José L. Ramírez, Some enumerations on non-decreasing Motzkin paths, Australasian J. of Combinatorics (2018) Vol. 72(1), 138-154.
- Jia Huang, Partially Palindromic Compositions, J. Int. Seq. (2023) Vol. 26, Art. 23.4.1. See p. 15.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 464
- S. Morier-Genoud, V. Ovsienko, and S. Tabachnikov, Introducing supersymmetric frieze patterns and linear difference operators, Math. Z. 281 (2015) 1061.
- Alexey Ustinov, Supercontinuants, arXiv:1503.04497 [math.NT], 2015.
- R. Witula, D. Slota and A. Warzynski, Quasi-Fibonacci Numbers of the Seventh Order, J. Integer Seq., 9 (2006), Article 06.4.3.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-1).
-
a:=[1,2,4];; for n in [4..40] do a[n]:=2*a[n-1]+a[n-2]-a[n-3]; od; a; # G. C. Greubel, May 09 2019
-
[n le 3 select 2^(n-1) else 2*Self(n-1)+Self(n-2)-Self(n-3): n in [1..40]]; // Vincenzo Librandi, Mar 17 2015
-
spec := [S,{S=Sequence(Union(Z,Prod(Z,Sequence(Prod(Z,Z)))))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
LinearRecurrence[{2,1,-1},{1,2,4},40] (* Roman Witula, Aug 07 2012 *)
CoefficientList[Series[(1-x^2)/(1-2x-x^2+x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 17 2015 *)
a[ n_] := {0, 1, 0} . MatrixPower[{{1, 1, 1}, {1, 1, 0}, {1, 0, 0}}, n+1] . {0, 1, 0}; (* Michael Somos, Dec 12 2023 *)
-
h(n):=if n=0 then 1 else sum(sum(binomial(k,j)*binomial(j,n-3*k+2*j)*2^(3*k-n-j)*(-1)^(k-j),j,0,k),k,1,n); a(n):=if n<2 then h(n) else h(n)-h(n-2); /* Vladimir Kruchinin, Sep 09 2010 */
-
my(x='x+O('x^40)); Vec((1-x^2)/(1-2*x-x^2+x^3)) \\ G. C. Greubel, May 09 2019
-
{a(n) = [0, 1, 0] * [1, 1, 1; 1, 1, 0; 1, 0, 0]^(n+1) * [0, 1, 0]~}; /* Michael Somos, Dec 12 2023 */
-
((1-x^2)/(1-2*x-x^2+x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, May 09 2019
A052975
Expansion of (1-2*x)*(1-x)/(1-5*x+6*x^2-x^3).
Original entry on oeis.org
1, 2, 6, 19, 61, 197, 638, 2069, 6714, 21794, 70755, 229725, 745889, 2421850, 7863641, 25532994, 82904974, 269190547, 874055885, 2838041117, 9215060822, 29921113293, 97153242650, 315454594314, 1024274628963, 3325798821581, 10798800928441, 35063486341682
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
- Nachum Dershowitz, Between Broadway and the Hudson: A Bijection of Corridor Paths, arXiv:2006.06516 [math.CO], 2020.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1047
- László Németh and László Szalay, Sequences Involving Square Zig-Zag Shapes, J. Int. Seq., Vol. 24 (2021), Article 21.5.2.
- Roman Witula, Damian Slota and Adam Warzynski, Quasi-Fibonacci Numbers of the Seventh Order, J. Integer Seq., 9 (2006), Article 06.4.3.
- Index entries for linear recurrences with constant coefficients, signature (5,-6,1).
-
I:=[1,2,6]; [n le 3 select I[n] else 5*Self(n-1)-6*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Sep 18 2015
-
spec := [S,{S=Sequence(Prod(Union(Sequence(Prod(Sequence(Z),Z)),Sequence(Z)),Z))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
with(GraphTheory):G:=PathGraph(6): A:= AdjacencyMatrix(G): nmax:=25; n2:=2*nmax+1: for n from 0 to n2 do B(n):=A^n; a(n):=add(B(n)[k,1],k=1..5); od: seq(a(2*n),n=0..nmax); # Johannes W. Meijer, May 29 2010
-
LinearRecurrence[{5,-6,1}, {1,2,6}, 50] (* Roman Witula, Aug 09 2012 *)
CoefficientList[Series[(1 - 2 x) (1 - x)/(1 - 5 x + 6 x^2 - x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 18 2015 *)
-
x='x+O('x^30); Vec((1-2*x)*(1-x)/(1-5*x+6*x^2-x^3)) \\ G. C. Greubel, Apr 19 2018
A078038
Expansion of (1-x)/(1+x-2*x^2-x^3).
Original entry on oeis.org
1, -2, 4, -7, 13, -23, 42, -75, 136, -244, 441, -793, 1431, -2576, 4645, -8366, 15080, -27167, 48961, -88215, 158970, -286439, 516164, -930072, 1675961, -3019941, 5441791, -9805712, 17669353, -31838986, 57371980, -103380599, 186285573, -335674791, 604865338, -1089929347, 1963985232
Offset: 0
From _Joerg Arndt_, May 21 2013: (Start)
There are abs(a(6-1))=23 compositions of 6 where there is no rise between every second pair of parts:
v v <--= no rise over these positions
01: [ 1 1 1 1 1 1 ]
02: [ 1 1 1 2 1 ]
03: [ 1 1 1 3 ]
04: [ 1 2 1 1 1 ]
05: [ 1 2 1 2 ]
06: [ 1 2 2 1 ]
07: [ 1 3 1 1 ]
08: [ 1 3 2 ]
09: [ 1 4 1 ]
10: [ 1 5 ]
11: [ 2 1 1 1 1 ]
12: [ 2 1 1 2 ]
13: [ 2 2 1 1 ]
14: [ 2 2 2 ]
15: [ 2 3 1 ]
16: [ 2 4 ]
17: [ 3 1 1 1 ]
18: [ 3 2 1 ]
19: [ 3 3 ]
20: [ 4 1 1 ]
21: [ 4 2 ]
22: [ 5 1 ]
23: [ 6 ]
There are abs(a(6-1))=23 compositions of 6 where there is no fall between every second pair of parts, starting with the second and third part:
v v <--= no fall over these positions
01: [ 1 1 1 1 1 1 ]
02: [ 1 1 1 1 2 ]
03: [ 1 1 1 3 ]
04: [ 1 1 2 1 1 ]
05: [ 1 1 2 2 ]
06: [ 1 1 3 1 ]
07: [ 1 1 4 ]
08: [ 1 2 2 1 ]
09: [ 1 2 3 ]
10: [ 1 5 ]
11: [ 2 1 1 1 1 ]
12: [ 2 1 1 2 ]
13: [ 2 1 2 1 ]
14: [ 2 1 3 ]
15: [ 2 2 2 ]
16: [ 2 4 ]
17: [ 3 1 1 1 ]
18: [ 3 1 2 ]
19: [ 3 3 ]
20: [ 4 1 1 ]
21: [ 4 2 ]
22: [ 5 1 ]
23: [ 6 ]
(End)
-
with(GraphTheory): G:= PathGraph(6): A:=AdjacencyMatrix(G): nmax:=36; for n from 0 to nmax do B(n):=A^n; a(n):=add(B(n)[3,k], k=1..6) od: seq(a(n), n=0..nmax); # Johannes W. Meijer, May 29 2010
-
LinearRecurrence[{-1, 2, 1}, {1, -2, 4}, 40] (* Jean-François Alcover, Jan 08 2019 *)
a[n_]:=Sum[(-(-2)^(n+1)Cos[(Pi r)/7]^n Cot[(Pi r)/14]Sin[(3Pi r)/7])/7,{r,1,5,2}]
Table[a[n],{n,0,40}]//Round (* Herbert Kociemba, Sep 17 2020 *)
-
Vec((1-x)/(1+x-2*x^2-x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 25 2012
Original entry on oeis.org
1, 3, 10, 33, 108, 352, 1145, 3721, 12087, 39254, 127469, 413908, 1343980, 4363921, 14169633, 46008619, 149389218, 485064009, 1574993356, 5113971944, 16604963593, 53915979657, 175064088671
Offset: 0
- Harry J. Smith, Table of n, a(n) for n = 0..500
- Nachum Dershowitz, Between Broadway and the Hudson: A Bijection of Corridor Paths, arXiv:2006.06516 [math.CO], 2020.
- László Németh and László Szalay, Sequences Involving Square Zig-Zag Shapes, J. Int. Seq., Vol. 24 (2021), Article 21.5.2.
- Index entries for linear recurrences with constant coefficients, signature (5, -6, 1).
-
a[0] = 1; a[1] = 3; a[2] = 10; a[n_] := a[n] = 5*a[n-1] - 6*a[n-2] + a[n-3]; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Jul 05 2013, after Floor van Lamoen *)
LinearRecurrence[{5,-6,1},{1,3,10},30] (* Harvey P. Dale, Nov 29 2013 *)
-
{ f="b060557.txt"; a0=1; a1=3; a2=10; write(f, "0 1"); write(f, "1 3"); write(f, "2 10"); for (n=3, 500, write(f, n, " ", a=5*a2 - 6*a1 + a0); a0=a1; a1=a2; a2=a; ) } \\ Harry J. Smith, Jul 07 2009
A068914
Square array read by antidiagonals of number of k step walks (each step +-1 starting from 0) which are never more than n or less than 0.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 2, 1, 1, 0, 1, 4, 3, 2, 1, 1, 0, 1, 4, 5, 3, 2, 1, 1, 0, 1, 8, 8, 6, 3, 2, 1, 1, 0, 1, 8, 13, 9, 6, 3, 2, 1, 1, 0, 1, 16, 21, 18, 10, 6, 3, 2, 1, 1, 0, 1, 16, 34, 27, 19, 10, 6, 3, 2, 1, 1, 0, 1, 32, 55, 54, 33, 20, 10, 6, 3, 2, 1, 1, 0, 1, 32, 89
Offset: 0
Rows start:
1,0,0,0,0,...;
1,1,1,1,1,...;
1,1,2,2,4,...;
1,1,2,3,5,...;
etc.
- Stefano Spezia, First 151 antidiagonals of the array, flattened
- Johann Cigler, Some remarks and conjectures related to lattice paths in strips along the x-axis, arXiv:1501.04750 [math.CO], 2015. See formula 0.2, p. 2.
- Nancy S. S. Gu, Helmut Prodinger, Combinatorics on lattice paths in strips, arXiv:2004.00684 [math.CO], 2020. See p. 2.
- R. Kemp, On the average depth of a prefix of the Dycklanguage D_1, Discrete Math., 36, 1981, 155-170.
-
v := ((1-sqrt(1-4*z^2))*1/2)/z: G := proc (k) options operator, arrow: (1+v^2)*(1-v^(k+1))/((1-v)*(1+v^(k+2))) end proc: a := proc (n, k) options operator, arrow: coeff(series(G(k), z = 0, 80), z, n) end proc: for n from 0 to 15 do seq(a(n, k), k = 0 .. 15) end do; # yields the first 16 entries of the first 16 rows of the square array
v := ((1-sqrt(1-4*z^2))*1/2)/z: G := proc (k) options operator, arrow: (1+v^2)*(1-v^(k+1))/((1-v)*(1+v^(k+2))) end proc: a := proc (n, k) options operator, arrow: coeff(series(G(k), z = 0, 80), z, n) end proc: for n from 0 to 13 do seq(a(n-i, i), i = 0 .. n) end do; # yields the first 14 antidiagonals of the square array in triangular form
-
v = (1-Sqrt[1-4z^2])/(2z); f[k_] = (1+v^2)*(1-v^(k+1))/((1-v)*(1+v^(k+2))) ; m = 14; a = Table[ PadRight[ CoefficientList[ Series[f[k], {z, 0, m}], z], m], {k, 0, m}]; Flatten[Table[a[[n+1-k, k]], {n, m}, {k, n, 1, -1}]][[;; 95]] (* Jean-François Alcover, Jul 13 2011, after Emeric Deutsch *)
-
T(n,k) = sum(j=floor(-n/(k+2)), ceil(n/(k+2)), (-1)^j*binomial(n,floor((n+(k+2)*j)/2))); \\ Stefano Spezia, May 08 2020
A113435
a(n) = a(n-1) + Sum_{k=0..n/3} a(n-3k) with a(0)=1.
Original entry on oeis.org
1, 1, 1, 2, 3, 4, 7, 11, 16, 26, 41, 62, 98, 154, 237, 371, 581, 901, 1406, 2197, 3418, 5329, 8317, 12956, 20196, 31501, 49096, 76532, 119338, 186029, 289997, 452141, 704861, 1098826, 1713111, 2670692, 4163483, 6490879, 10119152, 15775426
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Jia Huang, Partially Palindromic Compositions, J. Int. Seq. (2023) Vol. 26, Art. 23.4.1. See pp. 4, 19.
- Index entries for linear recurrences with constant coefficients, signature (1,0,2,-1).
-
CoefficientList[Series[(1 - x^3)/(1 - x - 2*x^3 + x^4), {x,0,50}], x] (* G. C. Greubel, Mar 10 2017 *)
LinearRecurrence[{1,0,2,-1},{1,1,1,2},40] (* Harvey P. Dale, Dec 17 2023 *)
-
x='x+O(x^50); Vec((1 - x^3)/(1 - x - 2*x^3 + x^4)) \\ G. C. Greubel, Mar 10 2017
A113439
a(n) = a(n-1) + Sum_{k=1..floor(n/4)} a(n-4k), with a(0)=1.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 4, 5, 8, 12, 17, 23, 34, 50, 72, 101, 146, 212, 306, 436, 627, 905, 1305, 1871, 2689, 3872, 5577, 8014, 11521, 16576, 23858, 34309, 49337, 70968, 102108, 146868, 211233, 303832, 437080, 628708, 904306, 1300737, 1871065, 2691401
Offset: 0
From _Jon E. Schoenfield_, Mar 11 2017: (Start)
Table of values T(j,k) = a(4k+j) in 4 rows:
.
j | k=0 1 2 3 4 5 6 7
----+--------------------------------------------------
0 | 1 2 8 34 146 627 2689 11521 ...
1 | 1 3 12 50 212 905 3872 16576 ...
2 | 1 4 17 72 306 1305 5577 23858 ...
3 | 1 5 23 101 436 1871 8014 34309 ...
.
T(2,4) = T(1,4) + T(2,0) + T(2,1) + T(2,2) + T(2,3)
306 = 212 + 1 + 4 + 17 + 72
(End)
-
CoefficientList[Series[(1 - x^4)/(1 - x - 2*x^4 + x^5), {x,0,50}], x] (* G. C. Greubel, Mar 11 2017 *)
LinearRecurrence[{1,0,0,2,-1},{1,1,1,1,2},50] (* Harvey P. Dale, Nov 10 2019 *)
-
x='x+O('x^50); Vec((1-x^4)/(1-x-2*x^4+x^5)) \\ G. C. Greubel, Mar 11 2017
A187067
Let i be in {1,2,3} and let r >= 0 be an integer. Let p = {p_1, p_2, p_3} = {-2,0,1}, n = 2*r + p_i and define a(-2)=0. Then, a(n) = a(2*r + p_i) gives the quantity of H_(7,3,0) tiles in a subdivided H_(7,i,r) tile after linear scaling by the factor x^r, where x = sqrt(2*cos(Pi/7)).
Original entry on oeis.org
0, 1, 1, 1, 1, 2, 3, 3, 4, 6, 9, 10, 14, 19, 28, 33, 47, 61, 89, 108, 155, 197, 286, 352, 507, 638, 924, 1145, 1652, 2069, 2993, 3721, 5373, 6714, 9707, 12087, 17460, 21794, 31501, 39254, 56714, 70755, 102256
Offset: 0
Suppose r=3. Then
C_r = C_3 = {a(2*r-2), a(2*r), a(2*r+1)} = {a(4), a(6), a(7)} = {1,3,3},
corresponding to the entries in the third column of
M = (U_2)^3 = (0 2 1)
(2 1 3)
(1 3 3).
Choose i=2 and set n = 2*r + p_i. Then a(n) = a(2*r + p_i) = a(6+0) = a(6) = 3, which equals the entry in row 2 and column 3 of M. Hence a subdivided H_(7,2,3) tile should contain a(6) = m_(2,3) = 3 H_(7,3,0) tiles.
- Matthew House, Table of n, a(n) for n = 0..7784
- L. Edson Jeffery, Unit-primitive matrices
- Roman Witula, D. Slota and A. Warzynski, Quasi-Fibonacci Numbers of the Seventh Order, J. Integer Seq., 9 (2006), Article 06.4.3.
- Index entries for linear recurrences with constant coefficients, signature (0,1,0,2,0,-1).
A113444
a(n) = a(n-1) + Sum_{0
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 9, 13, 18, 24, 31, 43, 60, 83, 113, 151, 206, 283, 389, 532, 721, 982, 1342, 1837, 2512, 3422, 4665, 6367, 8699, 11886, 16218, 22126, 30195, 41226, 56299, 76849, 104883, 143147, 195404, 266776, 364175, 497092, 678503, 926164
Offset: 0
-
CoefficientList[Series[(1 - x^5)/(1 - x - 2*x^5 + x^6), {x,0,50}], x] (* G. C. Greubel, Mar 11 2017 *)
-
x='x+O('x^50); Vec((1-x^5)/(1-x-2*x^5+x^6)) \\ G. C. Greubel, Mar 11 2017
A216054
Square array T, read by antidiagonals: T(n,k) = 0 if n-k >= 1 or if k-n >= 6, T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = T(0,5) = 1, T(n,k) = T(n-1,k) + T(n,k-1).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 2, 0, 0, 1, 4, 5, 0, 0, 0, 0, 5, 9, 5, 0, 0, 0, 0, 5, 14, 14, 0, 0, 0, 0, 0, 0, 19, 28, 14, 0, 0, 0, 0, 0, 0, 19, 47, 42, 0, 0, 0, 0, 0, 0, 0, 0, 66, 89, 42, 0, 0, 0, 0, 0, 0, 0, 0, 66, 155, 131, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 221, 286, 131, 0, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... row n=0
0, 1, 2, 3, 4, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... row n=1
0, 0, 2, 5, 9, 14, 19, 19, 0, 0, 0, 0, 0, 0, 0, ... row n=2
0, 0, 0, 5, 14, 28, 47, 66, 66, 0, 0, 0, 0, 0, 0, ... row n=3
0, 0, 0, 0, 14, 42, 89, 155, 221, 221, 0, 0, 0, 0, ... row n=4
0, 0, 0, 0, 0, 0, 42, 131, 286, 507, 728, 728, 0, 0, ... row n=5
0, 0, 0, 0, 0, 0, 131, 417, 924, 1652, 2380, 2380, 0, ... row n=6
...
- E. Lucas, Théorie des nombres, A.Blanchard, Paris, 1958, Tome 1, p.89
-
Clear[t]; t[0, k_ /; k <= 5] = 1; t[n_, k_] /; k < n || k > n+5 = 0; t[n_, k_] := t[n, k] = t[n-1, k] + t[n, k-1]; Table[t[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Mar 18 2013 *)
Comments