A228196
A triangle formed like Pascal's triangle, but with n^2 on the left border and 2^n on the right border instead of 1.
Original entry on oeis.org
0, 1, 2, 4, 3, 4, 9, 7, 7, 8, 16, 16, 14, 15, 16, 25, 32, 30, 29, 31, 32, 36, 57, 62, 59, 60, 63, 64, 49, 93, 119, 121, 119, 123, 127, 128, 64, 142, 212, 240, 240, 242, 250, 255, 256, 81, 206, 354, 452, 480, 482, 492, 505, 511, 512, 100, 287, 560, 806, 932, 962, 974, 997, 1016, 1023, 1024
Offset: 1
The start of the sequence as a triangular array read by rows:
0;
1, 2;
4, 3, 4;
9, 7, 7, 8;
16, 16, 14, 15, 16;
25, 32, 30, 29, 31, 32;
36, 57, 62, 59, 60, 63, 64;
Cf. We denote Pascal-like triangle with L(n) on the left border and R(n) on the right border by (L(n),R(n)).
A007318 (1,1),
A008949 (1,2^n),
A029600 (2,3),
A029618 (3,2),
A029635 (1,2),
A029653 (2,1),
A037027 (Fibonacci(n),1),
A051601 (n,n) n>=0,
A051597 (n,n) n>0,
A051666 (n^2,n^2),
A071919 (1,0),
A074829 (Fibonacci(n), Fibonacci(n)),
A074909 (1,n),
A093560 (3,1),
A093561 (4,1),
A093562 (5,1),
A093563 (6,1),
A093564 (7,1),
A093565 (8,1),
A093644 (9,1),
A093645 (10,1),
A095660 (1,3),
A095666 (1,4),
A096940 (1,5),
A096956 (1,6),
A106516 (3^n,1),
A108561(1,(-1)^n),
A132200 (4,4),
A134636 (2n+1,2n+1),
A137688 (2^n,2^n),
A160760 (3^(n-1),1),
A164844(1,10^n),
A164847 (100^n,1),
A164855 (101*100^n,1),
A164866 (101^n,1),
A172171 (1,9),
A172185 (9,11),
A172283 (-9,11),
A177954 (int(n/2),1),
A193820 (1,2^n),
A214292 (n,-n),
A227074 (4^n,4^n),
A227075 (3^n,3^n),
A227076 (5^n,5^n),
A227550 (n!,n!),
A228053 ((-1)^n,(-1)^n),
A228074 (Fibonacci(n), n).
-
T:= function(n,k)
if k=0 then return n^2;
elif k=n then return 2^n;
else return T(n-1,k-1) + T(n-1,k);
fi;
end;
Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 12 2019
-
T:= proc(n, k) option remember;
if k=0 then n^2
elif k=n then 2^k
else T(n-1, k-1) + T(n-1, k)
fi
end:
seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Nov 12 2019
-
T[n_, k_]:= T[n, k] = If[k==0, n^2, If[k==n, 2^k, T[n-1, k-1] + T[n-1, k]]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 12 2019 *)
Flatten[Table[Sum[i^2 Binomial[n-1-i, n-k-i], {i,1,n-k}] + Sum[2^i Binomial[n-1-i, k-i], {i,1,k}], {n,0,10}, {k,0,n}]] (* Greg Dresden, Aug 06 2022 *)
-
T(n,k) = if(k==0, n^2, if(k==n, 2^k, T(n-1, k-1) + T(n-1, k) )); \\ G. C. Greubel, Nov 12 2019
-
def funcL(n):
q = n**2
return q
def funcR(n):
q = 2**n
return q
for n in range (1,9871):
t=int((math.sqrt(8*n-7) - 1)/ 2)
i=n-t*(t+1)/2-1
j=(t*t+3*t+4)/2-n-1
sum1=0
sum2=0
for m1 in range (1,i+1):
sum1=sum1+funcR(m1)*binomial(i+j-m1-1,i-m1)
for m2 in range (1,j+1):
sum2=sum2+funcL(m2)*binomial(i+j-m2-1,j-m2)
sum=sum1+sum2
-
@CachedFunction
def T(n, k):
if (k==0): return n^2
elif (k==n): return 2^n
else: return T(n-1, k-1) + T(n-1, k)
[[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 12 2019
A029600
Numbers in the (2,3)-Pascal triangle (by row).
Original entry on oeis.org
1, 2, 3, 2, 5, 3, 2, 7, 8, 3, 2, 9, 15, 11, 3, 2, 11, 24, 26, 14, 3, 2, 13, 35, 50, 40, 17, 3, 2, 15, 48, 85, 90, 57, 20, 3, 2, 17, 63, 133, 175, 147, 77, 23, 3, 2, 19, 80, 196, 308, 322, 224, 100, 26, 3, 2, 21, 99, 276, 504, 630, 546, 324, 126, 29, 3, 2, 23, 120, 375, 780, 1134, 1176, 870, 450, 155, 32, 3
Offset: 0
First few rows are:
1;
2, 3;
2, 5, 3;
2, 7, 8, 3;
2, 9, 15, 11, 3;
...
-
T:= function(n,k)
if n=0 and k=0 then return 1;
elif k=0 then return 2;
elif k=n then return 3;
else return T(n-1,k-1) + T(n-1,k);
fi;
end;
Flat(List([0..12], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Nov 12 2019
-
a029600 n k = a029600_tabl !! n !! k
a029600_row n = a029600_tabl !! n
a029600_tabl = [1] : iterate
(\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [2,3]
-- Reinhard Zumkeller, Apr 08 2012
-
T:= proc(n, k) option remember;
if k=0 and n=0 then 1
elif k=0 then 2
elif k=n then 3
else T(n-1, k-1) + T(n-1, k)
fi
end:
seq(seq(T(n, k), k=0..n), n=0..12); # G. C. Greubel, Nov 12 2019
-
T[n_, k_]:= T[n, k]= If[n==0 && k==0, 1, If[k==0, 2, If[k==n, 3, T[n-1, k-1] + T[n-1, k] ]]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 12 2019 *)
-
T(n,k) = if(n==0 && k==0, 1, if(k==0, 2, if(k==n, 3, T(n-1, k-1) + T(n-1, k) ))); \\ G. C. Greubel, Nov 12 2019
-
@CachedFunction
def T(n, k):
if (n==0 and k==0): return 1
elif (k==0): return 2
elif (k==n): return 3
else: return T(n-1,k-1) + T(n-1, k)
[[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 12 2019
A161198
Triangle of polynomial coefficients related to the series expansions of (1-x)^((-1-2*n)/2).
Original entry on oeis.org
1, 1, 2, 3, 8, 4, 15, 46, 36, 8, 105, 352, 344, 128, 16, 945, 3378, 3800, 1840, 400, 32, 10395, 39048, 48556, 27840, 8080, 1152, 64, 135135, 528414, 709324, 459032, 160720, 31136, 3136, 128
Offset: 0
From _Gary W. Adamson_, Jul 19 2011: (Start)
The first few rows of matrix M are:
1, 2, 0, 0, 0, ...
1, 3, 2, 0, 0, ...
1, 4, 5, 2, 0, ...
1, 5, 9, 7, 2, ...
1, 6, 14, 16, 9, ... (End)
The first few G(p,n) polynomials are:
G(p,-3) = 15 - 46*p + 36*p^2 - 8*p^3
G(p,-2) = 3 - 8*p + 4*p^2
G(p,-1) = 1 - 2*p
The first few F(p,n) polynomials are:
F(p,0) = 1
F(p,1) = 1 + 2*p
F(p,2) = 3 + 8*p + 4*p^2
F(p,3) = 15 + 46*p + 36*p^2 + 8*p^3
The first few rows of the upper and lower hourglass triangles are:
[15, -46, 36, -8]
[3, -8, 4]
[1, -2]
[1]
[1, 2]
[3, 8, 4]
[15, 46, 36, 8]
A046161 gives the denominators of the series expansions of all (1-x)^((-1-2*n)/2).
A028338 is a scaled triangle version,
A039757 is a scaled signed triangle version and
A109692 is a transposed scaled triangle version.
A001147 is the first left hand column and equals the row sums.
A004041 is the second left hand column divided by 2,
A028339 is the third left hand column divided by 4,
A028340 is the fourth left hand column divided by 8,
A028341 is the fifth left hand column divided by 16.
-
nmax:=7; for n from 0 to nmax do a(n,n):=2^n: a(n,0):=doublefactorial(2*n-1) od: for n from 2 to nmax do for m from 1 to n-1 do a(n,m) := 2*a(n-1,m-1)+(2*n-1)*a(n-1,m) od: od: seq(seq(a(n,k), k=0..n), n=0..nmax);
nmax:=7: M := Matrix(1..nmax+1,1..nmax+1): A029635 := proc(n,k): binomial(n,k) + binomial(n-1,k-1) end: for i from 1 to nmax do for j from 1 to i+1 do M[i,j] := A029635(i,j-1) od: od: for n from 0 to nmax do B := M^n: for m from 0 to n do a(n,m):= B[1,m+1] od: od: seq(seq(a(n,m), m=0..n), n=0..nmax);
A161198 := proc(n,k) option remember; if k > n or k < 0 then 0 elif n = 0 and k = 0 then 1 else 2*A161198(n-1, k-1) + (2*n-1)*A161198(n-1, k) fi end:
seq(print(seq(A161198(n,k), k = 0..n)), n = 0..6); # Peter Luschny, May 09 2013
-
nmax = 7; a[n_, 0] := (2*n-1)!!; a[n_, n_] := 2^n; a[n_, m_] := a[n, m] = 2*a[n-1, m-1]+(2*n-1)*a[n-1, m]; Table[a[n, m], {n, 0, nmax}, {m, 0, n}] // Flatten (* Jean-François Alcover, Feb 25 2014, after Maple *)
-
for(n=0,9, print(Vec(Ser( 2^n*prod( k=1,n, x+(2*k-1)/2 ),,n+1)))) \\ M. F. Hasler, Jul 23 2011
-
@CachedFunction
def A161198(n,k):
if k > n or k < 0 : return 0
if n == 0 and k == 0: return 1
return 2*A161198(n-1,k-1)+(2*n-1)*A161198(n-1,k)
for n in (0..6): [A161198(n,k) for k in (0..n)] # Peter Luschny, May 09 2013
A095660
Pascal (1,3) triangle.
Original entry on oeis.org
3, 1, 3, 1, 4, 3, 1, 5, 7, 3, 1, 6, 12, 10, 3, 1, 7, 18, 22, 13, 3, 1, 8, 25, 40, 35, 16, 3, 1, 9, 33, 65, 75, 51, 19, 3, 1, 10, 42, 98, 140, 126, 70, 22, 3, 1, 11, 52, 140, 238, 266, 196, 92, 25, 3, 1, 12, 63, 192, 378, 504, 462, 288, 117, 28, 3, 1, 13, 75, 255, 570, 882, 966, 750, 405, 145, 31, 3
Offset: 0
Triangle starts:
3;
1, 3;
1, 4, 3;
1, 5, 7, 3;
1, 6, 12, 10, 3;
1, 7, 18, 22, 13, 3;
1, 8, 25, 40, 35, 16, 3;
1, 9, 33, 65, 75, 51, 19, 3;
1, 10, 42, 98, 140, 126, 70, 22, 3;
1, 11, 52, 140, 238, 266, 196, 92, 25, 3;
1, 12, 63, 192, 378, 504, 462, 288, 117, 28, 3;
1, 13, 75, 255, 570, 882, 966, 750, 405, 145, 31, 3;
Row sums:
A000079(n+1), n>=1, 3 if n=0. Alternating row sums are [3, -2, followed by 0's].
-
a095660 n k = a095660_tabl !! n !! k
a095660_row n = a095660_tabl !! n
a095660_tabl = [3] : iterate
(\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [1,3]
-- Reinhard Zumkeller, Apr 08 2012
-
A095660:= func< n,k | n eq 0 select 3 else (1+2*k/n)*Binomial(n,k) >;
[A095660(n,k): k in [0..n], n in [1..12]]; // G. C. Greubel, May 02 2021
-
T(n,k):=piecewise(n=0,3,0Mircea Merca, Apr 08 2012
-
{3}~Join~Table[(1 + 2 k/n) Binomial[n, k], {n, 11}, {k, 0, n}] // Flatten (* Michael De Vlieger, Sep 14 2015 *)
-
def A095660(n,k): return 3 if n==0 else (1+2*k/n)*binomial(n,k)
flatten([[A095660(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 02 2021
A095666
Pascal (1,4) triangle.
Original entry on oeis.org
4, 1, 4, 1, 5, 4, 1, 6, 9, 4, 1, 7, 15, 13, 4, 1, 8, 22, 28, 17, 4, 1, 9, 30, 50, 45, 21, 4, 1, 10, 39, 80, 95, 66, 25, 4, 1, 11, 49, 119, 175, 161, 91, 29, 4, 1, 12, 60, 168, 294, 336, 252, 120, 33, 4, 1, 13, 72, 228, 462, 630, 588, 372, 153, 37, 4, 1, 14, 85, 300, 690, 1092
Offset: 0
Triangle begins:
[4];
[1,4];
[1,5,4];
[1,6,9,4];
[1,7,15,13,4];
...
Row sums:
A020714(n-1), n >= 1, 4 if n=0.
Alternating row sums are [4, -3, followed by 0's].
-
a095666 n k = a095666_tabl !! n !! k
a095666_row n = a095666_tabl !! n
a095666_tabl = [4] : iterate
(\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [1,4]
-- Reinhard Zumkeller, Apr 08 2012
-
a(n,k):=(1+3*k/n)*binomial(n,k) # Mircea Merca, Apr 08 2012
-
A095666[n_, k_] := If[n == k, 4, (3*k/n + 1)*Binomial[n, k]];
Table[A095666[n, k], {n, 0, 12}, {k, 0, n}] (* Paolo Xausa, Apr 14 2025 *)
A096940
Pascal (1,5) triangle.
Original entry on oeis.org
5, 1, 5, 1, 6, 5, 1, 7, 11, 5, 1, 8, 18, 16, 5, 1, 9, 26, 34, 21, 5, 1, 10, 35, 60, 55, 26, 5, 1, 11, 45, 95, 115, 81, 31, 5, 1, 12, 56, 140, 210, 196, 112, 36, 5, 1, 13, 68, 196, 350, 406, 308, 148, 41, 5, 1, 14, 81, 264, 546, 756, 714, 456, 189, 46, 5, 1, 15, 95, 345, 810, 1302
Offset: 0
Triangle begins:
5;
1, 5;
1, 6, 5;
1, 7, 11, 5;
1, 8, 18, 16, 5;
1, 9, 26, 34, 21, 5;
1, 10, 35, 60, 55, 26, 5;
1, 11, 45, 95, 115, 81, 31, 5;
1, 12, 56, 140, 210, 196, 112, 36, 5;
1, 13, 68, 196, 350, 406, 308, 148, 41, 5;
1, 14, 81, 264, 546, 756, 714, 456, 189, 46, 5; etc.
Row sums:
A007283(n-1), n>=1, 5 if n=0; g.f.: (5-4*x)/(1-2*x). Alternating row sums are [5, -4, followed by 0's].
Column sequences (without leading zeros) give for m=1..9, with n>=0:
A000027(n+5),
A056000(n-1),
A096941-7.
-
a(n,k):=piecewise(n=0,5,0Mircea Merca, Apr 08 2012
-
a(n) = {if(n <= 1, return(5 - 4*(n==1))); my(m = (sqrtint(8*n + 1) - 1)\2, t = n - binomial(m + 1, 2)); (1+4*t/m)*binomial(m,t)} \\ David A. Corneth, Aug 28 2019
A143491
Unsigned 2-Stirling numbers of the first kind.
Original entry on oeis.org
1, 2, 1, 6, 5, 1, 24, 26, 9, 1, 120, 154, 71, 14, 1, 720, 1044, 580, 155, 20, 1, 5040, 8028, 5104, 1665, 295, 27, 1, 40320, 69264, 48860, 18424, 4025, 511, 35, 1, 362880, 663696, 509004, 214676, 54649, 8624, 826, 44, 1, 3628800, 6999840, 5753736, 2655764
Offset: 2
Triangle begins
n\k|.....2.....3.....4.....5.....6.....7
========================================
2..|.....1
3..|.....2.....1
4..|.....6.....5.....1
5..|....24....26.....9.....1
6..|...120...154....71....14.....1
7..|...720..1044...580...155....20.....1
...
T(4,3) = 5. The permutations of {1,2,3,4} with 3 cycles such that 1 and 2 belong to different cycles are: (1)(2)(3 4), (1)(3)(24), (1)(4)(23), (2)(3)(14) and (2)(4)(13). The remaining possibility (3)(4)(12) is not allowed.
From _Aviv Rotbart_, May 05 2011: (Start)
Example of the alternating group permutations numbers:
Triangle begins
n\k|.....0.....1.....2.....3.....4.....5.....6.....7
====================================================
2..|.....1
3..|.....1.....2
4..|.....1.....5.....6
5..|.....1.....9....26....24
6..|.....1....14....71...154...120
7..|.....1....20...155...580..1044..720
A(n,k) = number of permutations in An of length k, with respect to the generators set {(12)(ij)}. For example, A(2,0)=1 (only the identity is there), for A4, the generators are {(12)(13),(12)(14),(12,23),(12)(24),(12)(34)}, thus we have A(4,1)=5 (exactly 5 generators), the permutations of length 2 are:
(12)(13)(12)(13) = (312)
(12)(13)(12)(14) = (41)(23)
(12)(13)(12)(24) = (432)(1)
(12)(13)(12)(34) = (342)(1)
(12)(23)(12)(24) = (13)(24)
(12)(14)(12)(14) = (412)(3)
Namely, A(4,2)=6. Together with the identity [=(12)(12), of length 0. therefore A(4,0)=1] we have 12 permutations, comprising all A4 (4!/2=12). (End)
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Olivier Bodini, Antoine Genitrini, and Mehdi Naima, Ranked Schröder Trees, arXiv:1808.08376 [cs.DS], 2018.
- Andrei Z. Broder, The r-Stirling numbers, Discrete Math. 49, 241-259 (1984)
- A. Dzhumadildaev and D. Yeliussizov, Path decompositions of digraphs and their applications to Weyl algebra, arXiv preprint arXiv:1408.6764 [math.CO], 2014. [Version 1 contained many references to the OEIS, which were removed in Version 2. - _N. J. A. Sloane_, Mar 28 2015]
- Askar Dzhumadil’daev and Damir Yeliussizov, Walks, partitions, and normal ordering, Electronic Journal of Combinatorics, 22(4) (2015), #P4.10.
- Neuwirth Erich, Recursively defined combinatorial functions: Extending Galton's board, Discrete Math. 239 No. 1-3, 33-51 (2001)
- R. Murri, Fatgraph Algorithms and the Homology of the Kontsevich Complex, arXiv:1202.1820 [math.AG], 2012. (see Table 1, p. 3)
- Aviv Rotbart, Generator Sets for the Alternating Group, Séminaire Lotharingien de Combinatoire 65 (2011), Article B65b, 16pp.
- Michael J. Schlosser and Meesue Yoo, Elliptic Rook and File Numbers, Electronic Journal of Combinatorics, 24(1) (2017), #P1.31.
- M. Shattuck, Generalized r-Lah numbers, arXiv:1412.8721 [math.CO], 2014.
-
with combinat: T := (n, k) -> (n-2)! * add((n-j-1)*abs(stirling1(j,k-2))/j!,j = k-2..n-2): for n from 2 to 10 do seq(T(n, k), k = 2..n) end do;
-
t[n_, k_] := (n-2)!*Sum[(n-j-1)*Abs[StirlingS1[j, k-2]]/j!, {j, k-2, n-2}]; Table[t[n, k], {n, 2, 11}, {k, 2, n}] // Flatten (* Jean-François Alcover, Apr 16 2013, after Maple *)
A096956
Pascal (1,6) triangle.
Original entry on oeis.org
6, 1, 6, 1, 7, 6, 1, 8, 13, 6, 1, 9, 21, 19, 6, 1, 10, 30, 40, 25, 6, 1, 11, 40, 70, 65, 31, 6, 1, 12, 51, 110, 135, 96, 37, 6, 1, 13, 63, 161, 245, 231, 133, 43, 6, 1, 14, 76, 224, 406, 476, 364, 176, 49, 6, 1, 15, 90, 300, 630, 882, 840, 540, 225, 55, 6, 1, 16, 105, 390, 930
Offset: 0
Triangle begins:
[0] 6;
[1] 1, 6;
[2] 1, 7, 6;
[3] 1, 8, 13, 6;
[4] 1, 9, 21, 19, 6;
[5] 1, 10, 30, 40, 25, 6;
...
Row sums:
A005009(n-1), n>=1, 6 if n=0; g.f.: (6-5*x)/(1-2*x). Alternating row sums are [6, -5, followed by 0's].
-
a(n,k):=piecewise(n=0,6,0Mircea Merca, Apr 08 2012
-
A096956[n_, k_] := If[n == k, 6, (5*k/n + 1)*Binomial[n, k]];
Table[A096956[n, k], {n, 0, 12}, {k, 0, n}] (* Paolo Xausa, Apr 14 2025 *)
A114496
a(n) = Sum of binomial(n,k)*binomial(2n+k,k) over all k.
Original entry on oeis.org
1, 4, 26, 190, 1462, 11584, 93536, 765314, 6323270, 52638760, 440815036, 3709445084, 31340292076, 265683004240, 2258793820988, 19251776923210, 164440378882630, 1407266585304760, 12063701803046300, 103571977632247076
Offset: 0
-
Table[Sum[Binomial[n, k]*Binomial[2n+k, k], {k, 0, n}], {n,0,25}]
-
a(n) = sum(k=0, n, 2^(n-k)*binomial(2*n,k)*binomial(n,k));
vector(50, n, a(n-1)) \\ Altug Alkan, Oct 05 2015
A112857
Triangle T(n,k) read by rows: number of Green's R-classes in the semigroup of order-preserving partial transformations (of an n-element chain) consisting of elements of height k (height(alpha) = |Im(alpha)|).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 7, 5, 1, 1, 15, 17, 7, 1, 1, 31, 49, 31, 9, 1, 1, 63, 129, 111, 49, 11, 1, 1, 127, 321, 351, 209, 71, 13, 1, 1, 255, 769, 1023, 769, 351, 97, 15, 1, 1, 511, 1793, 2815, 2561, 1471, 545, 127, 17, 1, 1, 1023, 4097, 7423, 7937, 5503, 2561, 799, 161, 19, 1
Offset: 0
T(3,2) = 5 because in a regular semigroup of transformations the Green's R-classes coincide with convex partitions of subsets of {1,2,3} with convex classes (modulo the subsets): {1}, {2}/{1}, {3}/{2}, {3}/{1,2}, {3}/{1}, {2,3}
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
1;
1, 1;
1, 3, 1;
1, 7, 5, 1;
1, 15, 17, 7, 1;
1, 31, 49, 31, 9, 1;
1, 63, 129, 111, 49, 11, 1;
1, 127, 321, 351, 209, 71, 13, 1;
1, 255, 769, 1023, 769, 351, 97, 15, 1;
1, 511, 1793, 2815, 2561, 1471, 545, 127, 17, 1;
1, 1023, 4097, 7423, 7937, 5503, 2561, 799, 161, 19, 1;
...
As to matrix M, top row of M^3 = (1, 7, 5, 1, 0, 0, 0, ...)
- Peter Bala, A 4-parameter family of embedded Riordan arrays
- Peter Bala, A note on the diagonals of a proper Riordan Array
- Harry Crane, Left-right arrangements, set partitions, and pattern avoidance, Australasian Journal of Combinatorics, 61(1) (2015), 57-72.
- A. Laradji and A. Umar, Combinatorial results for semigroups of order-preserving partial transformations, Journal of Algebra 278, (2004), 342-359.
- A. Laradji and A. Umar, Combinatorial results for semigroups of order-decreasing partial transformations, J. Integer Seq. 7 (2004), 04.3.8.
-
A112857 := proc(n,k) if k=0 or k=n then 1; elif k <0 or k>n then 0; else 2*procname(n-1,k)+procname(n-1,k-1) ; end if; end proc: # R. J. Mathar, Jun 20 2011
-
Table[Abs[1 + (-1)^k*2^(n - k + 1)*Sum[ Binomial[n - 2 j - 2, k - 2 j - 1], {j, 0, Floor[k/2]}]] - 4 Boole[And[n == 1, k == 0]], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Nov 24 2016 *)
Comments