cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 191 results. Next

A246278 Prime shift array: Square array read by antidiagonals: A(1,col) = 2*col, and for row > 1, A(row,col) = A003961(A(row-1,col)).

Original entry on oeis.org

2, 4, 3, 6, 9, 5, 8, 15, 25, 7, 10, 27, 35, 49, 11, 12, 21, 125, 77, 121, 13, 14, 45, 55, 343, 143, 169, 17, 16, 33, 175, 91, 1331, 221, 289, 19, 18, 81, 65, 539, 187, 2197, 323, 361, 23, 20, 75, 625, 119, 1573, 247, 4913, 437, 529, 29, 22, 63, 245, 2401, 209, 2873, 391, 6859, 667, 841, 31
Offset: 2

Views

Author

Antti Karttunen, Aug 21 2014

Keywords

Comments

The array is read by antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
This array can be obtained by taking every second column from array A242378, starting from its column 2.
Permutation of natural numbers larger than 1.
The terms on row n are all divisible by n-th prime, A000040(n).
Each column is strictly growing, and the terms in the same column have the same prime signature.
A055396(n) gives the row number of row where n occurs,
and A246277(n) gives its column number, both starting from 1.
From Antti Karttunen, Jan 03 2015: (Start)
A252759(n) gives their sum minus one, i.e. the Manhattan distance of n from the top left corner.
If we assume here that a(1) = 1 (but which is not explicitly included because outside of the array), then A252752 gives the inverse permutation. See also A246276.
(End)

Examples

			The top left corner of the array:
   2,     4,     6,     8,    10,    12,    14,    16,    18, ...
   3,     9,    15,    27,    21,    45,    33,    81,    75, ...
   5,    25,    35,   125,    55,   175,    65,   625,   245, ...
   7,    49,    77,   343,    91,   539,   119,  2401,   847, ...
  11,   121,   143,  1331,   187,  1573,   209, 14641,  1859, ...
  13,   169,   221,  2197,   247,  2873,   299, 28561,  3757, ...
		

Crossrefs

First row: A005843 (the even numbers), from 2 onward.
Row 2: A249734, Row 3: A249827.
Column 1: A000040 (primes), Column 2: A001248 (squares of primes), Column 3: A006094 (products of two successive primes), Column 4: A030078 (cubes of primes).
Transpose: A246279.
Inverse permutation: A252752.
One more than A246275.
Arrays obtained by applying a particular function (given in parentheses) to the entries of this array. Cases where the columns grow monotonically are indicated with *: A249822 (A078898), A253551 (* A156552), A253561 (* A122111), A341605 (A017665), A341606 (A017666), A341607 (A006530 o A017666), A341608 (A341524), A341626 (A341526), A341627 (A341527), A341628 (A006530 o A341527), A342674 (A341530), A344027 (* A003415, arithmetic derivative), A355924 (A342671), A355925 (A009194), A355926 (A355442), A355927 (* sigma), A356155 (* A258851), A372562 (A252748), A372563 (A286385), A378979 (* deficiency, A033879), A379008 (* (probably), A294898), A379010 (* A000010, Euler phi), A379011 (* A083254).
Cf. A329050 (subtable).

Programs

  • Mathematica
    f[p_?PrimeQ] := f[p] = Prime[PrimePi@ p + 1]; f[1] = 1; f[n_] := f[n] = Times @@ (f[First@ #]^Last@ # &) /@ FactorInteger@ n; Block[{lim = 12}, Table[#[[n - k, k]], {n, 2, lim}, {k, n - 1, 1, -1}] &@ NestList[Map[f, #] &, Table[2 k, {k, lim}], lim]] // Flatten (* Michael De Vlieger, Jan 04 2016, after Jean-François Alcover at A003961 *)
  • Scheme
    (define (A246278 n) (if (<= n 1) n (A246278bi (A002260 (- n 1)) (A004736 (- n 1))))) ;; Square array starts with offset=2, and we have also tacitly defined a(1) = 1 here.
    (define (A246278bi row col) (if (= 1 row) (* 2 col) (A003961 (A246278bi (- row 1) col))))

Formula

A(1,col) = 2*col, and for row > 1, A(row,col) = A003961(A(row-1,col)).
As a composition of other similar sequences:
a(n) = A122111(A253561(n)).
a(n) = A249818(A083221(n)).
For all n >= 1, a(n+1) = A005940(1+A253551(n)).
A(n, k) = A341606(n, k) * A355925(n, k). - Antti Karttunen, Jul 22 2022

Extensions

Starting offset of the linear sequence changed from 1 to 2, without affecting the column and row indices by Antti Karttunen, Jan 03 2015

A050997 Fifth powers of primes.

Original entry on oeis.org

32, 243, 3125, 16807, 161051, 371293, 1419857, 2476099, 6436343, 20511149, 28629151, 69343957, 115856201, 147008443, 229345007, 418195493, 714924299, 844596301, 1350125107, 1804229351, 2073071593, 3077056399, 3939040643, 5584059449, 8587340257, 10510100501
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that A062799(k) = 5.
Let r(n) = (a(n)+1)/(a(n)-1) if a(n) mod 4 = 3, (a(n)-1)/(a(n)+1) otherwise; then Product_{n>=1} r(n) = (31/33) * (244/242) * (3124/3126) * (16808/16806) * ... = 246016/259875. - Dimitris Valianatos, Mar 09 2020

Crossrefs

Programs

Formula

A056595(a(n)) = 3. - Reinhard Zumkeller, Aug 15 2011
Sum_{n>=1} 1/a(n) = P(5) = 0.0357550174... (A085965). - Amiram Eldar, Jul 27 2020
From Amiram Eldar, Jan 23 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = zeta(5)/zeta(10) (A157291).
Product_{n>=1} (1 - 1/a(n)) = 1/zeta(5) = 1/A013663. (End)

A085541 Decimal expansion of the prime zeta function at 3.

Original entry on oeis.org

1, 7, 4, 7, 6, 2, 6, 3, 9, 2, 9, 9, 4, 4, 3, 5, 3, 6, 4, 2, 3, 1, 1, 3, 3, 1, 4, 6, 6, 5, 7, 0, 6, 7, 0, 0, 9, 7, 5, 4, 1, 2, 1, 2, 1, 9, 2, 6, 1, 4, 9, 2, 8, 9, 8, 8, 8, 6, 7, 2, 0, 1, 6, 7, 0, 1, 6, 3, 1, 5, 8, 9, 5, 2, 8, 1, 2, 9, 5, 8, 7, 6, 3, 5, 6, 3, 4, 2, 0, 0, 5, 3, 6, 9, 7, 2, 5, 6, 0, 5, 4, 6, 7, 9, 1
Offset: 0

Views

Author

Cino Hilliard, Jul 02 2003

Keywords

Comments

Mathar's Table 1 (cited below) lists expansions of the prime zeta function at integers s in 10..39. - Jason Kimberley, Jan 05 2017

Examples

			0.1747626392994435364231...
		

References

  • Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
  • J. W. L. Glaisher, On the Sums of Inverse Powers of the Prime Numbers, Quart. J. Math. 25, 347-362, 1891.

Crossrefs

Decimal expansion of the prime zeta function: A085548 (at 2), this sequence (at 3), A085964 (at 4) to A085969 (at 9).

Programs

  • Magma
    R := RealField(106);
    PrimeZeta := func;
    Reverse(IntegerToSequence(Floor(PrimeZeta(3,117)*10^105)));
    // Jason Kimberley, Dec 30 2016
  • Mathematica
    (* If Mathematica version >= 7.0 then RealDigits[PrimeZetaP[3]//N[#,105]&][[1]] else : *) m = 200; $MaxExtraPrecision = 200; PrimeZetaP[s_] := NSum[MoebiusMu[k]*Log[Zeta[k*s]]/k, {k, 1, m}, AccuracyGoal -> m, NSumTerms -> m, PrecisionGoal -> m, WorkingPrecision -> m]; RealDigits[PrimeZetaP[3]][[1]][[1 ;; 105]] (* Jean-François Alcover, Jun 24 2011 *)
  • PARI
    recip3(n) = { v=0; p=1; forprime(y=2,n, v=v+1./y^3; ); print(v) }
    
  • PARI
    sumeulerrat(1/p,3) \\ Hugo Pfoertner, Feb 03 2020
    

Formula

P(3) = Sum_{p prime} 1/p^3 = Sum_{n>=1} mobius(n)*log(zeta(3*n))/n. - Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003
Equals A086033 + A085992 + 1/8. - R. J. Mathar, Jul 22 2010
Equals Sum_{k>=1} 1/A030078(k). - Amiram Eldar, Jul 27 2020

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003

A348717 a(n) is the least k such that A003961^i(k) = n for some i >= 0 (where A003961^i denotes the i-th iterate of A003961).

Original entry on oeis.org

1, 2, 2, 4, 2, 6, 2, 8, 4, 10, 2, 12, 2, 14, 6, 16, 2, 18, 2, 20, 10, 22, 2, 24, 4, 26, 8, 28, 2, 30, 2, 32, 14, 34, 6, 36, 2, 38, 22, 40, 2, 42, 2, 44, 12, 46, 2, 48, 4, 50, 26, 52, 2, 54, 10, 56, 34, 58, 2, 60, 2, 62, 20, 64, 14, 66, 2, 68, 38, 70, 2, 72, 2
Offset: 1

Views

Author

Rémy Sigrist, Oct 31 2021

Keywords

Comments

All terms except a(1) = 1 are even.
To compute a(n) for n > 1:
- if n = Product_{j = 1..o} prime(p_j)^e_j (where prime(i) denotes the i-th prime number, p_1 < ... < p_o and e_1 > 0)
- then a(n) = Product_{j = 1..o} prime(p_j + 1 - p_1)^e_j.
This sequence has similarities with A304776: here we shift down prime indexes, there prime exponents.
Smallest number generated by uniformly decrementing the indices of the prime factors of n. Thus, for n > 1, the smallest m > 1 such that the first differences of the indices of the ordered prime factors (including repetitions) are the same for m and n. As a function, a(.) preserves properties such as prime signature. - Peter Munn, May 12 2022

Crossrefs

Positions of particular values (see formula section): A000040, A001248, A006094, A030078, A030514, A046301, A050997, A090076, A090090, A166329, A251720.
Also see formula section for the relationship to: A000265, A003961, A004277, A005940, A020639, A046523, A055396, A071364, A122111, A156552, A243055, A243074, A297845, A322993.
Sequences with comparable definitions: A304776, A316437.
Cf. A246277 (terms halved), A305897 (restricted growth sequence transform), A354185 (Möbius transform), A354186 (Dirichlet inverse), A354187 (sum with it).

Programs

  • Mathematica
    a[1] = 1; a[n_] := Module[{f = FactorInteger[n], d}, d = PrimePi[f[[1, 1]]] - 1; Times @@ ((Prime[PrimePi[#[[1]]] - d]^#[[2]]) & /@ f)]; Array[a, 100] (* Amiram Eldar, Oct 31 2021 *)
  • PARI
    a(n) = { my (f=factor(n)); if (#f~>0, my (pi1=primepi(f[1,1])); for (k=1, #f~, f[k,1] = prime(primepi(f[k,1])-pi1+1))); factorback(f) }

Formula

a(n) = n iff n belongs to A004277.
A003961^(A055396(n)-1)(a(n)) = n for any n > 1.
a(n) = 2 iff n belongs to A000040 (prime numbers).
a(n) = 4 iff n belongs to A001248 (squares of prime numbers).
a(n) = 6 iff n belongs to A006094 (products of two successive prime numbers).
a(n) = 8 iff n belongs to A030078 (cubes of prime numbers).
a(n) = 10 iff n belongs to A090076.
a(n) = 12 iff n belongs to A251720.
a(n) = 14 iff n belongs to A090090.
a(n) = 16 iff n belongs to A030514.
a(n) = 30 iff n belongs to A046301.
a(n) = 32 iff n belongs to A050997.
a(n) = 36 iff n belongs to A166329.
a(1) = 1, for n > 1, a(n) = 2*A246277(n). - Antti Karttunen, Feb 23 2022
a(n) = A122111(A243074(A122111(n))). - Peter Munn, Feb 23 2022
From Peter Munn and Antti Karttunen, May 12 2022: (Start)
a(1) = 1; a(2n) = 2n; a(A003961(n)) = a(n). [complete definition]
a(n) = A005940(1+A322993(n)) = A005940(1+A000265(A156552(n))).
Equivalently, A156552(a(n)) = A000265(A156552(n)).
A297845(a(n), A020639(n)) = n.
A046523(a(n)) = A046523(n).
A071364(a(n)) = A071364(n).
a(n) >= A071364(n).
A243055(a(n)) = A243055(n).
(End)

A252464 a(1) = 0, a(2n) = 1 + a(n), a(2n+1) = 1 + a(A064989(2n+1)); also binary width of terms of A156552 and A243071.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 3, 3, 4, 5, 4, 6, 5, 4, 4, 7, 4, 8, 5, 5, 6, 9, 5, 4, 7, 4, 6, 10, 5, 11, 5, 6, 8, 5, 5, 12, 9, 7, 6, 13, 6, 14, 7, 5, 10, 15, 6, 5, 5, 8, 8, 16, 5, 6, 7, 9, 11, 17, 6, 18, 12, 6, 6, 7, 7, 19, 9, 10, 6, 20, 6, 21, 13, 5, 10, 6, 8, 22, 7, 5, 14, 23, 7, 8, 15, 11, 8, 24, 6, 7, 11, 12, 16, 9, 7, 25, 6, 7, 6, 26, 9, 27
Offset: 1

Views

Author

Antti Karttunen, Dec 20 2014

Keywords

Comments

a(n) tells how many iterations of A252463 are needed before 1 is reached, i.e., the distance of n from 1 in binary trees like A005940 and A163511.
Similarly for A253553 in trees A253563 and A253565. - Antti Karttunen, Apr 14 2019

Examples

			From _Gus Wiseman_, Apr 02 2019: (Start)
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so a(n) is the size of the inner lining of the integer partition with Heinz number n, which is also the size of the largest hook of the same partition. For example, the partition with Heinz number 715 is (6,5,3), with diagram
  o o o o o o
  o o o o o
  o o o
which has inner lining
          o o
      o o o
  o o o
and largest hook
  o o o o o o
  o
  o
both of which have size 8, so a(715) = 8.
(End)
		

Crossrefs

Programs

  • Mathematica
    Table[If[n==1,1,PrimeOmega[n]+PrimePi[FactorInteger[n][[-1,1]]]]-1,{n,100}] (* Gus Wiseman, Apr 02 2019 *)
  • PARI
    A061395(n) = if(n>1, primepi(vecmax(factor(n)[, 1])), 0);
    A252464(n) = (bigomega(n) + A061395(n) - 1); \\ Antti Karttunen, Apr 14 2019
    
  • Python
    from sympy import primepi, primeomega, primefactors
    def A252464(n): return primeomega(n)+primepi(max(primefactors(n)))-1 if n>1 else 0 # Chai Wah Wu, Jul 17 2023

Formula

a(1) = 0; for n > 1: a(n) = 1 + a(A252463(n)).
a(n) = A029837(1+A243071(n)). [a(n) = binary width of terms of A243071.]
a(n) = A029837(A005941(n)) = A029837(1+A156552(n)). [Also binary width of terms of A156552.]
Other identities. For all n >= 1:
a(A000040(n)) = n.
a(A001248(n)) = n+1.
a(A030078(n)) = n+2.
And in general, a(prime(n)^k) = n+k-1.
a(A000079(n)) = n. [I.e., a(2^n) = n.]
For all n >= 2:
a(n) = A001222(n) + A061395(n) - 1 = A001222(n) + A252735(n) = A061395(n) + A252736(n) = 1 + A252735(n) + A252736(n).
a(n) = A325134(n) - 1. - Gus Wiseman, Apr 02 2019
From Antti Karttunen, Apr 14 2019: (Start)
a(1) = 0; for n > 1: a(n) = 1 + a(A253553(n)).
a(n) = A001221(n) + A297167(n) = A297113(n) + A297155(n).
(End).

A085986 Squares of the squarefree semiprimes (p^2*q^2).

Original entry on oeis.org

36, 100, 196, 225, 441, 484, 676, 1089, 1156, 1225, 1444, 1521, 2116, 2601, 3025, 3249, 3364, 3844, 4225, 4761, 5476, 5929, 6724, 7225, 7396, 7569, 8281, 8649, 8836, 9025, 11236, 12321, 13225, 13924, 14161, 14884, 15129, 16641, 17689, 17956, 19881
Offset: 1

Views

Author

Alford Arnold, Jul 06 2003

Keywords

Comments

This sequence is a member of a family of sequences directly related to A025487. First terms and known sequences are listed below: 1, A000007; 2, A000040; 4, A001248; 6, A006881; 8, A030078; 12, A054753; 16, A030514; 24, A065036; 30, A007304; 32, A050997; 36, this sequence; 48, ?; 60, ?; 64, ?; ....
Subsequence of A077448. The numbers in A077448 but not in here are 1, the squares of A046386, the squares of A067885, etc. - R. J. Mathar, Sep 12 2008
a(4)-a(3)=29 and a(3)+a(4)=421 are both prime. There are no other cases where the sum and difference of two members of this sequence are both prime. - Robert Israel and J. M. Bergot, Oct 25 2019

Examples

			A006881 begins 6 10 14 15 ... so this sequence begins 36 100 196 225 ...
		

Crossrefs

Subsequence of A036785 and of A077448.
Subsequence of A062503.
Cf. A025487.

Programs

  • Magma
    [k^2:k in [1..150]| IsSquarefree(k) and #PrimeDivisors(k) eq 2]; // Marius A. Burtea, Oct 24 2019
    
  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={2,2}; Select[Range[20000], f] (* Vladimir Joseph Stephan Orlovsky, Aug 14 2009 *)
    Select[Range[200],PrimeOmega[#]==2&&SquareFreeQ[#]&]^2 (* Harvey P. Dale, Mar 07 2013 *)
  • PARI
    list(lim)=my(v=List(), x=sqrtint(lim\=1), t); forprime(p=2, x\2, t=p; forprime(q=2, min(x\t,p-1), listput(v, (t*q)^2))); Set(v) \\ Charles R Greathouse IV, Sep 22 2015
    
  • PARI
    is(n)=factor(n)[,2]==[2,2]~ \\ Charles R Greathouse IV, Oct 19 2015
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange
    def A085986(n):
        def f(x): return int(n+x+(t:=primepi(s:=isqrt(x)))+(t*(t-1)>>1)-sum(primepi(x//k) for k in primerange(1, s+1)))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m**2 # Chai Wah Wu, Aug 18 2024

Formula

a(n) = A006881(n)^2.
Sum_{n>=1} 1/a(n) = (P(2)^2 - P(4))/2 = (A085548^2 - A085964)/2 = 0.063767..., where P is the prime zeta function. - Amiram Eldar, Jul 06 2020

A030513 Numbers with 4 divisors.

Original entry on oeis.org

6, 8, 10, 14, 15, 21, 22, 26, 27, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 122, 123, 125, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 177, 178, 183, 185, 187
Offset: 1

Views

Author

Keywords

Comments

Essentially the same as A007422.
Numbers which are either the product of two distinct primes (A006881) or the cube of a prime (A030078).
4*a(n) are the solutions to A048272(x) = Sum_{d|x} (-1)^d = 4. - Benoit Cloitre, Apr 14 2002
Since A119479(4)=3, there are never more than 3 consecutive integers in the sequence. Triples of consecutive integers start at 33, 85, 93, 141, 201, ... (A039833). No such triple contains a term of the form p^3. - Ivan Neretin, Feb 08 2016
Numbers that are equal to the product of their proper divisors (A007956) (proof in Sierpiński). - Bernard Schott, Apr 04 2022

References

  • Wacław Sierpiński, Elementary Theory of Numbers, Ex. 2 p. 174, Warsaw, 1964.

Crossrefs

Equals the disjoint union of A006881 and A030078.

Programs

  • Magma
    [n: n in [1..200] | DivisorSigma(0, n) eq 4]; // Vincenzo Librandi, Jul 16 2015
    
  • Mathematica
    Select[Range[200], DivisorSigma[0,#]==4&] (* Harvey P. Dale, Apr 06 2011 *)
  • PARI
    is(n)=numdiv(n)==4 \\ Charles R Greathouse IV, May 18 2015
    
  • Python
    from math import isqrt
    from sympy import primepi, integer_nthroot, primerange
    def A030513(n):
        def f(x): return int(n+x-primepi(integer_nthroot(x,3)[0])+(t:=primepi(s:=isqrt(x)))+(t*(t-1)>>1)-sum(primepi(x//k) for k in primerange(1, s+1)))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 16 2024

Formula

{n : A000005(n) = 4}. - Juri-Stepan Gerasimov, Oct 10 2009

Extensions

Incorrect comments removed by Charles R Greathouse IV, Mar 18 2010

A085987 Product of exactly four primes, three of which are distinct (p^2*q*r).

Original entry on oeis.org

60, 84, 90, 126, 132, 140, 150, 156, 198, 204, 220, 228, 234, 260, 276, 294, 306, 308, 315, 340, 342, 348, 350, 364, 372, 380, 414, 444, 460, 476, 490, 492, 495, 516, 522, 525, 532, 550, 558, 564, 572, 580, 585, 620, 636, 644, 650, 666, 693, 708, 726
Offset: 1

Views

Author

Alford Arnold, Jul 08 2003

Keywords

Comments

A014613 is completely determined by A030514, A065036, A085986, A085987 and A046386 since p(4) = 5. (cf. A000041). More generally, the first term of sequences which completely determine the k-almost primes can be found in A036035 (a resorted version of A025487).
A050326(a(n)) = 4. - Reinhard Zumkeller, May 03 2013

Examples

			a(1) = 60 since 60 = 2*2*3*5 and has three distinct prime factors.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sort[Last/@FactorInteger[n]]=={1,1,2}; Select[Range[2000], f] (* Vladimir Joseph Stephan Orlovsky, May 03 2011 *)
    pefp[{a_,b_,c_}]:={a^2 b c,a b^2 c,a b c^2}; Module[{upto=800},Select[ Flatten[ pefp/@Subsets[Prime[Range[PrimePi[upto/6]]],{3}]]//Union,#<= upto&]] (* Harvey P. Dale, Oct 02 2018 *)
  • PARI
    list(lim)=my(v=List(),t,x,y,z);forprime(p=2,lim^(1/4),t=lim\p^2;forprime(q=p+1,sqrtint(t),forprime(r=q+1,t\q,x=p^2*q*r;y=p*q^2*r;listput(v,x);if(y<=lim,listput(v,y);z=p*q*r^2;if(z<=lim,listput(v,z))))));vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 15 2011
    
  • PARI
    is(n)=vecsort(factor(n)[,2]~)==[1,1,2] \\ Charles R Greathouse IV, Oct 19 2015
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A085987(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x+sum((t:=primepi(s:=isqrt(y:=x//r**2)))+(t*(t-1)>>1)-sum(primepi(y//k) for k in primerange(1, s+1)) for r in primerange(isqrt(x)+1))+sum(primepi(x//p**3) for p in primerange(integer_nthroot(x,3)[0]+1))-primepi(integer_nthroot(x,4)[0])
        return bisection(f,n,n) # Chai Wah Wu, Mar 27 2025

Extensions

More terms from Reinhard Zumkeller, Jul 25 2003

A007422 Multiplicatively perfect numbers j: product of divisors of j is j^2.

Original entry on oeis.org

1, 6, 8, 10, 14, 15, 21, 22, 26, 27, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 122, 123, 125, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 177, 178, 183, 185, 187
Offset: 1

Views

Author

Keywords

Comments

Or, numbers j such that product of proper divisors of j is j.
If M(j) denotes the product of the divisors of j, then j is said to be k-multiplicatively perfect if M(j) = j^k. All such numbers are of the form p q^(k-1) or p^(2k-1). This statement is in Sandor's paper. Therefore all 2-multiplicatively perfect numbers are semiprime p*q or cubes p^3. - Walter Kehowski, Sep 13 2005
All 2-multiplicatively perfect numbers except 1 have 4 divisors (as implied by Kehowski) and the converse is also true that all numbers with 4 divisors are 2-multiplicatively perfect. - Howard Berman (howard_berman(AT)hotmail.com), Oct 24 2008
Also 1 followed by numbers j such that A000005(j) = 4. - Nathaniel Johnston, May 03 2011
Fixed points of A007956. - Reinhard Zumkeller, Jan 26 2014

Examples

			The divisors of 10 are 1, 2, 5, 10 and 1 * 2 * 5 * 10 = 100 = 10^2.
		

References

  • Kenneth Ireland and Michael Ira Rosen, A Classical Introduction to Modern Number Theory. Springer-Verlag, NY, 1982, p. 19.
  • Edmund Landau, Elementary Number Theory, translation by Jacob E. Goodman of Elementare Zahlentheorie (Vol. I_1 (1927) of Vorlesungen ueber Zahlentheorie), by Edmund Landau, with added exercises by Paul T. Bateman and E. E. Kohlbecker, Chelsea Publishing Co., New York, 1958, pp. 31-32.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A030513 (same as this sequence but without the 1), A027751, A006881 (subsequence), A030078 (subsequence), A084110, A084116, A236473.

Programs

  • Haskell
    a007422 n = a007422_list !! (n-1)
    a007422_list = [x | x <- [1..], a007956 x == x]
    -- Reinhard Zumkeller, Jan 26 2014
    
  • Magma
    IsA007422:=func< n | &*Divisors(n) eq n^2 >; [ n: n in [1..200] | IsA007422(n) ]; // Klaus Brockhaus, May 04 2011
    
  • Maple
    k:=2: MPL:=[]: for z from 1 to 1 do for n from 1 to 5000 do if convert(divisors(n),`*`) = n^k then MPL:=[op(MPL),n] fi od; od; MPL; # Walter Kehowski, Sep 13 2005
    # second Maple program:
    q:= n-> n=1 or numtheory[tau](n)=4:
    select(q, [$1..200])[];  # Alois P. Heinz, Dec 17 2021
  • Mathematica
    Select[Range[200], Times@@Divisors[#] == #^2 &]  (* Harvey P. Dale, Mar 27 2011 *)
  • PARI
    is(n)=n==1 || numdiv(n) == 4 \\ Charles R Greathouse IV, Oct 15 2015
    
  • Python
    from math import isqrt
    from sympy import primepi, integer_nthroot, primerange
    def A007422(n):
        def f(x): return int(n-1+x-primepi(integer_nthroot(x,3)[0])+(t:=primepi(s:=isqrt(x)))+(t*(t-1)>>1)-sum(primepi(x//k) for k in primerange(1, s+1)))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 16 2024

Formula

A084110(a(n)) = 1, see also A084116. - Reinhard Zumkeller, May 12 2003
The number of terms not exceeding x is N(x) ~ x * log(log(x))/log(x) (Chau, 2004). - Amiram Eldar, Jun 29 2022

Extensions

Some numbers were omitted - thanks to Erich Friedman for pointing this out.

A325352 Heinz number of the differences plus one of the integer partition with Heinz number n.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 2, 5, 1, 6, 1, 7, 3, 8, 1, 6, 1, 10, 5, 11, 1, 12, 2, 13, 4, 14, 1, 9, 1, 16, 7, 17, 3, 12, 1, 19, 11, 20, 1, 15, 1, 22, 6, 23, 1, 24, 2, 10, 13, 26, 1, 12, 5, 28, 17, 29, 1, 18, 1, 31, 10, 32, 7, 21, 1, 34, 19, 15, 1, 24, 1, 37, 6, 38
Offset: 1

Views

Author

Gus Wiseman, Apr 23 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The only fixed point is 1 because otherwise the sequence decreases omega (A001222) by one.

Examples

			The partition (3,2,2,1) with Heinz number 90 has differences plus one (2,1,2) with Heinz number 18, so a(90) = 18.
		

Crossrefs

Positions of m's are A008578 (m = 1), A001248 (m = 2), A006094 (m = 3), A030078 (m = 4), A090076 (m = 5).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    db[n_]:=Times@@Prime/@(1+Differences[primeMS[n]]);
    Table[db[n],{n,100}]
Previous Showing 11-20 of 191 results. Next