A099093
Riordan array (1, 3+3x).
Original entry on oeis.org
1, 0, 3, 0, 3, 9, 0, 0, 18, 27, 0, 0, 9, 81, 81, 0, 0, 0, 81, 324, 243, 0, 0, 0, 27, 486, 1215, 729, 0, 0, 0, 0, 324, 2430, 4374, 2187, 0, 0, 0, 0, 81, 2430, 10935, 15309, 6561, 0, 0, 0, 0, 0, 1215, 14580, 45927, 52488, 19683, 0, 0, 0, 0, 0, 243, 10935, 76545, 183708, 177147, 59049
Offset: 0
Rows begin:
1;
0, 3;
0, 3, 9;
0, 0, 18, 27;
0, 0, 9, 81, 81;
0, 0, 0, 81, 324, 243;
0, 0, 0, 27, 486, 1215, 729;
...
-
[[Binomial(k,n-k)*3^k: k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Feb 21 2015 /* as the triangle */
-
tabl(nn) = {for (n=0, nn, for (k=0, n, print1(binomial(k, n-k)*3^k, ", ");); print(););} \\ Michel Marcus, Feb 21 2015
A099581
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k-1)*3^(n-k-1).
Original entry on oeis.org
0, 0, 1, 3, 15, 54, 216, 810, 3105, 11745, 44631, 169128, 641520, 2431944, 9221121, 34959195, 132543135, 502506990, 1905156936, 7222991778, 27384465825, 103822372809, 393620574951, 1492328843280, 5657848431840, 21450531825360
Offset: 0
-
[n le 4 select Floor((n-1)^2/3) else 3*Self(n-1) +6*Self(n-2) -9*Self(n-3) -9*Self(n-4): n in [1..41]]; // G. C. Greubel, Jul 23 2022
-
LinearRecurrence[{3,6,-9,-9},{0,0,1,3},40] (* Harvey P. Dale, Jun 07 2021 *)
-
@CachedFunction
def a(n):
if (n<4): return floor(n^2/3)
else: return 3*a(n-1) + 6*a(n-2) - 9*a(n-3) - 9*a(n-4)
[a(n) for n in (0..40)] # G. C. Greubel, Jul 23 2022
A123603
Triangle T(n,k), 0<=k<=n, read by rows, with T(0,0) = 1, T(n,k) = 0 if k<0 or if k>n, T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-2,k-2) - T(n-2,k-1) + T(n-2,k).
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 3, 3, 3, 3, 5, 5, 9, 5, 5, 8, 10, 17, 17, 10, 8, 13, 18, 36, 35, 36, 18, 13, 21, 33, 69, 81, 81, 69, 33, 21, 34, 59, 133, 167, 199, 167, 133, 59, 34, 55, 105, 249, 345, 435, 435, 345, 249, 105, 55, 89, 185, 462, 687, 945, 1005, 945, 687, 462, 185, 89
Offset: 0
Triangle begins:
1;
1, 1;
2, 1, 2;
3, 3, 3, 3;
5, 5, 9, 5, 5;
8, 10, 17, 17, 10, 8;
13, 18, 36, 35, 36, 18, 13;
21, 33, 69, 81, 81, 69, 33, 21;
34, 59, 133, 167, 199, 167, 133, 59, 34;
55, 105, 249, 345, 435, 435, 345, 249, 105, 55;
89, 185, 462, 687, 945, 1005, 945, 687, 462, 185, 89; ...
-
CoefficientList[CoefficientList[Series[1/(1 - x - x*y - x^2 + x^2*y - x^2*y^2), {x, 0, 10}, {y, 0, 10}], x], y] // Flatten (* G. C. Greubel, Oct 16 2017 *)
T[0, 0] := 1; T[n_, k_] := If[k < 0 || k > n, 0, T[n - 1, k - 1] + T[n - 1, k] + T[n - 2, k - 2] - T[n - 2, k - 1] + T[n - 2, k]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] (* G. C. Greubel, Oct 16 2017 *)
A172375
Triangle T(n, k, q) = c(n-1, q)*c(n, q)/(c(k-1, q)^2*c(n-k, q)*c(n-k+1, q)*f(k, q)), where c(n, q) = Product_{j=1..n} f(j, q), f(n, q) = q*(f(n-1, q) + f(n-2, q)), f(0, q) = 0, f(1, q) = 1, and q = 2, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 48, 48, 1, 1, 352, 2816, 352, 1, 1, 2640, 154880, 154880, 2640, 1, 1, 19680, 8659200, 63500800, 8659200, 19680, 1, 1, 146944, 481976320, 26508697600, 26508697600, 481976320, 146944, 1, 1, 1096704, 26859012096, 11012194959360, 82591462195200, 11012194959360, 26859012096, 1096704, 1
Offset: 1
Triangle begins as:
1;
1, 1;
1, 6, 1;
1, 48, 48, 1;
1, 352, 2816, 352, 1;
1, 2640, 154880, 154880, 2640, 1;
1, 19680, 8659200, 63500800, 8659200, 19680, 1;
1, 146944, 481976320, 26508697600, 26508697600, 481976320, 146944, 1;
-
f[n_, q_]:= (-I*Sqrt[q])^(n-1)*ChebyshevU[n-1, I*Sqrt[q]/2];
c[n_, q_]:= Product[f[j, q], {j,n}];
T[n_, k_, q_]:= c[n-1, q]*c[n, q]/(c[k-1, q]^2*c[n-k, q]*c[n-k+1, q]*f[k, q]);
Table[T[n, k, 2], {n,12}, {k, n}]//Flatten (* modified by G. C. Greubel, May 07 2021 *)
-
@CachedFunction
def f(n,q): return (-i*sqrt(q))^(n-1)*chebyshev_U(n-1, i*sqrt(q)/2)
def c(n,q): return product( f(j,q) for j in (1..n) )
def T(n,k,q): return c(n-1, q)*c(n, q)/(c(k-1, q)^2*c(n-k, q)*c(n-k+1, q)*f(k, q))
flatten([[T(n,k,2) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, May 07 2021
A172376
Triangle T(n, k, q) = c(n-1, q)*c(n, q)/(c(k-1, q)^2*c(n-k, q)*c(n-k+1, q)*f(k, q)), where c(n, q) = Product_{j=1..n} f(j, q), f(n, q) = q*(f(n-1, q) + f(n-2, q)), f(0, q) = 0, f(1, q) = 1, and q = 3, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 12, 1, 1, 180, 180, 1, 1, 2565, 38475, 2565, 1, 1, 36936, 7895070, 7895070, 36936, 1, 1, 530712, 1633531536, 23277824388, 1633531536, 530712, 1, 1, 7628985, 337399490610, 69234375473172, 69234375473172, 337399490610, 7628985, 1, 1, 109656180, 69713779364775, 205544107079102610, 2959835141939077584, 205544107079102610, 69713779364775, 109656180, 1
Offset: 1
Triangle begins as:
1;
1, 1;
1, 12, 1;
1, 180, 180, 1;
1, 2565, 38475, 2565, 1;
1, 36936, 7895070, 7895070, 36936, 1;
1, 530712, 1633531536, 23277824388, 1633531536, 530712, 1;
-
f[n_, q_]:= (-I*Sqrt[q])^(n-1)*ChebyshevU[n-1, I*Sqrt[q]/2];
c[n_, q_]:= Product[f[j, q], {j,n}];
T[n_, k_, q_]:= c[n-1, q]*c[n, q]/(c[k-1, q]^2*c[n-k, q]*c[n-k+1, q]*f[k, q]);
Table[T[n, k, 3], {n,12}, {k, n}]//Flatten (* modified by G. C. Greubel, May 07 2021 *)
-
@CachedFunction
def f(n,q): return (-i*sqrt(q))^(n-1)*chebyshev_U(n-1, i*sqrt(q)/2)
def c(n,q): return product( f(j,q) for j in (1..n) )
def T(n,k,q): return c(n-1, q)*c(n, q)/(c(k-1, q)^2*c(n-k, q)*c(n-k+1, q)*f(k, q))
flatten([[T(n,k,3) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, May 07 2021
A103820
Whitney transform of 3^n.
Original entry on oeis.org
1, 4, 16, 61, 232, 880, 3337, 12652, 47968, 181861, 689488, 2614048, 9910609, 37573972, 142453744, 540083149, 2047610680, 7763081488, 29432076505, 111585473980, 423052651456, 1603914376309, 6080901083296, 23054446378816
Offset: 0
-
I:=[1,4,16]; [n le 3 select I[n] else 4*Self(n-1)-3*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Aug 18 2017
-
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=3*a[n-1]+3*a[n-2]+1 od: seq(a[n], n=1..33); # Zerinvary Lajos, Dec 14 2008
-
Join[{a=0,b=1},Table[c=3*b+3*a+1;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 17 2011 *)
LinearRecurrence[{4, 0, -3}, {1, 4, 16}, 40] (* Vincenzo Librandi, Aug 18 2017 *)
A134927
a(0)=a(1)=1; a(n) = 3*(a(n-1) + a(n-2)).
Original entry on oeis.org
1, 1, 6, 21, 81, 306, 1161, 4401, 16686, 63261, 239841, 909306, 3447441, 13070241, 49553046, 187869861, 712268721, 2700415746, 10238053401, 38815407441, 147160382526, 557927369901, 2115263257281, 8019571881546, 30404505416481
Offset: 0
-
a[0]:=1:a[1]:=1:for n from 2 to 50 do a[n]:=3*a[n-1]+3*a[n-2] od: seq(a[n], n=0..33); # Zerinvary Lajos, Dec 14 2008
-
LinearRecurrence[{3, 3}, {1, 1}, 30]
-
a=[1,1];for(i=2,10,a=concat(a,3*a[#a]+3*a[#a-1]));a \\ Charles R Greathouse IV, Oct 04 2011
-
from sage.combinat.sloane_functions import recur_gen2
it = recur_gen2(1,1,3,3)
[next(it) for i in range(25)] # Zerinvary Lajos, Jun 25 2008
A172012
Expansion of (2-3*x)/(1-3*x-3*x^2) .
Original entry on oeis.org
2, 3, 15, 54, 207, 783, 2970, 11259, 42687, 161838, 613575, 2326239, 8819442, 33437043, 126769455, 480619494, 1822166847, 6908359023, 26191577610, 99299809899, 376474162527, 1427321917278, 5411388239415, 20516130470079, 77782556128482, 294896059795683
Offset: 0
Claudio Peruzzi (claudio.peruzzi(AT)gmail.com), Jan 22 2010
-
CoefficientList[Series[(2-3x)/(1-3x-3x^2),{x,0,30}],x] (* or *) LinearRecurrence[{3,3},{2,3},31] (* Harvey P. Dale, Aug 24 2011 *)
A201947
Triangle T(n,k), read by rows, given by (1,1,-1,0,0,0,0,0,0,0,...) DELTA (1,-1,1,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 1, 1, 2, 2, 0, 3, 5, 1, -1, 5, 10, 4, -2, -1, 8, 20, 12, -4, -4, 0, 13, 38, 31, -4, -13, -2, 1, 21, 71, 73, 3, -33, -11, 3, 1, 34, 130, 162, 34, -74, -42, 6, 6, 0, 55, 235, 344, 128, -146, -130, 0, 24, 3, -1
Offset: 0
Triangle begins:
1
1, 1
2, 2, 0
3, 5, 1, -1
5, 10, 4, -2, -1
8, 20, 12, -4, -4, 0
13, 38, 31, -4, -13, -2, 1
21, 71, 73, 3, -33, -11, 3, 1
34, 130, 162, 34, -74, -42, 6, 6, 0
55, 235, 344, 128, -146, -130, 0, 24, 3, -1
A238941
Triangle T(n,k), read by rows given by (1, 1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 5, 8, 4, 1, 13, 21, 13, 6, 1, 34, 55, 40, 25, 7, 1, 89, 144, 120, 90, 33, 9, 1, 233, 377, 354, 300, 132, 51, 10, 1, 610, 987, 1031, 954, 483, 234, 62, 12, 1, 1597, 2584, 2972, 2939, 1671, 951, 308, 86, 13, 1, 4181, 6765, 8495, 8850, 5561, 3573, 1345, 480, 100, 15, 1
Offset: 0
Triangle begins:
1;
1, 1;
2, 3, 1;
5, 8, 4, 1;
13, 21, 13, 6, 1;
34, 55, 40, 25, 7, 1;
89, 144, 120, 90, 33, 9, 1;
233, 377, 354, 300, 132, 51, 10, 1;
-
nmax=10; Column[CoefficientList[Series[CoefficientList[Series[(1 - 2*x + x*y)/(1 - 3*x + x^2 - x^2*y^2), {x, 0, nmax }], x], {y, 0, nmax}], y]] (* Indranil Ghosh, Mar 14 2017 *)
Previous
Showing 41-50 of 52 results.
Next
Comments