cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 52 results. Next

A099093 Riordan array (1, 3+3x).

Original entry on oeis.org

1, 0, 3, 0, 3, 9, 0, 0, 18, 27, 0, 0, 9, 81, 81, 0, 0, 0, 81, 324, 243, 0, 0, 0, 27, 486, 1215, 729, 0, 0, 0, 0, 324, 2430, 4374, 2187, 0, 0, 0, 0, 81, 2430, 10935, 15309, 6561, 0, 0, 0, 0, 0, 1215, 14580, 45927, 52488, 19683, 0, 0, 0, 0, 0, 243, 10935, 76545, 183708, 177147, 59049
Offset: 0

Views

Author

Paul Barry, Sep 25 2004

Keywords

Comments

Row sums are A030195. Diagonal sums are A099094.
The Riordan array (1,s+tx) defines T(n,k) = binomial(k,n-k)s^k(t/s)^(n-k). The row sums satisfy a(n)=s*a(n-1)+t*a(n-2) and the diagonal sums satisfy a(n)=s*a(n-2)+t*a(n-3).
Modulo 2, this sequence gives A106344. - Philippe Deléham, Dec 18 2008

Examples

			Rows begin:
  1;
  0, 3;
  0, 3, 9;
  0, 0, 18, 27;
  0, 0, 9, 81, 81;
  0, 0, 0, 81, 324, 243;
  0, 0, 0, 27, 486, 1215, 729;
  ...
		

Crossrefs

Cf. A038221.

Programs

  • Magma
    [[Binomial(k,n-k)*3^k: k in [0..n]]: n in [0.. 10]]; // Vincenzo Librandi, Feb 21 2015 /* as the triangle */
  • PARI
    tabl(nn) = {for (n=0, nn, for (k=0, n, print1(binomial(k, n-k)*3^k, ", ");); print(););} \\ Michel Marcus, Feb 21 2015
    

Formula

T(n,k) = binomial(k, n-k)*3^k. - corrected by Michel Marcus, Feb 21 2015
Columns have g.f. (3x+3x^3)^k.
T(n,k) = A026729(n,k)*3^k. - Philippe Deléham, Jul 29 2006

A099581 a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k-1)*3^(n-k-1).

Original entry on oeis.org

0, 0, 1, 3, 15, 54, 216, 810, 3105, 11745, 44631, 169128, 641520, 2431944, 9221121, 34959195, 132543135, 502506990, 1905156936, 7222991778, 27384465825, 103822372809, 393620574951, 1492328843280, 5657848431840, 21450531825360
Offset: 0

Views

Author

Paul Barry, Oct 23 2004

Keywords

Comments

In general a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k-1)*r^(n-k-1) has g.f. x^2/((1-r*x^2)*(1-r*x-r*x^2)) and satisfies a(n) = r*a(n-1) + 2*r*a(n-2) - r^2*a(n-3) - r^2*a(n-4).

Crossrefs

Programs

  • Magma
    [n le 4 select Floor((n-1)^2/3) else 3*Self(n-1) +6*Self(n-2) -9*Self(n-3) -9*Self(n-4): n in [1..41]]; // G. C. Greubel, Jul 23 2022
    
  • Mathematica
    LinearRecurrence[{3,6,-9,-9},{0,0,1,3},40] (* Harvey P. Dale, Jun 07 2021 *)
  • SageMath
    @CachedFunction
    def a(n):
        if (n<4): return floor(n^2/3)
        else: return 3*a(n-1) + 6*a(n-2) - 9*a(n-3) - 9*a(n-4)
    [a(n) for n in (0..40)] # G. C. Greubel, Jul 23 2022

Formula

G.f.: x^2/((1-3*x^2)*(1-3*x-3*x^2)).
a(n) = 3*a(n-1) + 6*a(n-2) - 9*a(n-3) - 9*a(n-4).
From G. C. Greubel, Jul 23 2022: (Start)
a(n) = (2*(-i*sqrt(3))^(n-1)*ChebyshevU(n-1, i*sqrt(3)/2) - (1-(-1)^n)*3^((n - 1)/2))/6.
E.g.f.: (4*exp(3*x/2)*sinh(sqrt(21)*x/2) - 2*sqrt(7)*sinh(sqrt(3)*x))/(6*sqrt(21)). (End)

A123603 Triangle T(n,k), 0<=k<=n, read by rows, with T(0,0) = 1, T(n,k) = 0 if k<0 or if k>n, T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-2,k-2) - T(n-2,k-1) + T(n-2,k).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 3, 3, 3, 5, 5, 9, 5, 5, 8, 10, 17, 17, 10, 8, 13, 18, 36, 35, 36, 18, 13, 21, 33, 69, 81, 81, 69, 33, 21, 34, 59, 133, 167, 199, 167, 133, 59, 34, 55, 105, 249, 345, 435, 435, 345, 249, 105, 55, 89, 185, 462, 687, 945, 1005, 945, 687, 462, 185, 89
Offset: 0

Views

Author

Philippe Deléham, Nov 14 2006, Mar 14 2014

Keywords

Examples

			Triangle begins:
1;
1, 1;
2, 1, 2;
3, 3, 3, 3;
5, 5, 9, 5, 5;
8, 10, 17, 17, 10, 8;
13, 18, 36, 35, 36, 18, 13;
21, 33, 69, 81, 81, 69, 33, 21;
34, 59, 133, 167, 199, 167, 133, 59, 34;
55, 105, 249, 345, 435, 435, 345, 249, 105, 55;
89, 185, 462, 687, 945, 1005, 945, 687, 462, 185, 89; ...
		

Crossrefs

Cf. A000045, A000129, A322239 (central terms).

Programs

  • Mathematica
    CoefficientList[CoefficientList[Series[1/(1 - x - x*y - x^2 + x^2*y - x^2*y^2), {x, 0, 10}, {y, 0, 10}], x], y] // Flatten (* G. C. Greubel, Oct 16 2017 *)
    T[0, 0] := 1; T[n_, k_] := If[k < 0 || k > n, 0, T[n - 1, k - 1] + T[n - 1, k] + T[n - 2, k - 2] - T[n - 2, k - 1] + T[n - 2, k]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] (* G. C. Greubel, Oct 16 2017 *)

Formula

T(n,k) = T(n,n-k).
T(n,0) = Fibonacci(n+1) = A000045(n+1).
T(n+1,1) = A010049(n+1).
Sum_{k,0<=k<=n} T(n,k)*x^k = A000045(n+1), A000129(n+1), A030195(n+1), A015532(n+1) for x = 0, 1, 2, 3 respectively.
G.f.: 1/(1 - x - x*y - x^2 + x^2*y - x^2*y^2).

A172375 Triangle T(n, k, q) = c(n-1, q)*c(n, q)/(c(k-1, q)^2*c(n-k, q)*c(n-k+1, q)*f(k, q)), where c(n, q) = Product_{j=1..n} f(j, q), f(n, q) = q*(f(n-1, q) + f(n-2, q)), f(0, q) = 0, f(1, q) = 1, and q = 2, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 6, 1, 1, 48, 48, 1, 1, 352, 2816, 352, 1, 1, 2640, 154880, 154880, 2640, 1, 1, 19680, 8659200, 63500800, 8659200, 19680, 1, 1, 146944, 481976320, 26508697600, 26508697600, 481976320, 146944, 1, 1, 1096704, 26859012096, 11012194959360, 82591462195200, 11012194959360, 26859012096, 1096704, 1
Offset: 1

Views

Author

Roger L. Bagula, Feb 01 2010

Keywords

Examples

			Triangle begins as:
  1;
  1,      1;
  1,      6,         1;
  1,     48,        48,           1;
  1,    352,      2816,         352,           1;
  1,   2640,    154880,      154880,        2640,         1;
  1,  19680,   8659200,    63500800,     8659200,     19680,      1;
  1, 146944, 481976320, 26508697600, 26508697600, 481976320, 146944, 1;
		

Crossrefs

Cf. A002605, A030195, this sequence (q=2), A172376 (q=3).

Programs

  • Mathematica
    f[n_, q_]:= (-I*Sqrt[q])^(n-1)*ChebyshevU[n-1, I*Sqrt[q]/2];
    c[n_, q_]:= Product[f[j, q], {j,n}];
    T[n_, k_, q_]:= c[n-1, q]*c[n, q]/(c[k-1, q]^2*c[n-k, q]*c[n-k+1, q]*f[k, q]);
    Table[T[n, k, 2], {n,12}, {k, n}]//Flatten (* modified by G. C. Greubel, May 07 2021 *)
  • Sage
    @CachedFunction
    def f(n,q): return (-i*sqrt(q))^(n-1)*chebyshev_U(n-1, i*sqrt(q)/2)
    def c(n,q): return product( f(j,q) for j in (1..n) )
    def T(n,k,q): return c(n-1, q)*c(n, q)/(c(k-1, q)^2*c(n-k, q)*c(n-k+1, q)*f(k, q))
    flatten([[T(n,k,2) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, May 07 2021

Formula

T(n, k, q) = c(n-1, q)*c(n, q)/(c(k-1, q)^2*c(n-k, q)*c(n-k+1, q)*f(k, q)), where c(n, q) = Product_{j=1..n} f(j, q), f(n, q) = q*(f(n-1, q) + f(n-2, q)), f(0, q) = 0, f(1, q) = 1, and q = 2.
T(n, k, q) = c(n-1, q)*c(n, q)/(c(k-1, q)^2*c(n-k, q)*c(n-k+1, q)*f(k,q)), where c(n, q) = Product_{j=1..n} f(j, q), and f(n, q) = (-I*sqrt(q))^(n-1)*ChebyshevU(n-1, i*sqrt(q)/2). - G. C. Greubel, May 07 2021

Extensions

Edited by G. C. Greubel, May 07 2021

A172376 Triangle T(n, k, q) = c(n-1, q)*c(n, q)/(c(k-1, q)^2*c(n-k, q)*c(n-k+1, q)*f(k, q)), where c(n, q) = Product_{j=1..n} f(j, q), f(n, q) = q*(f(n-1, q) + f(n-2, q)), f(0, q) = 0, f(1, q) = 1, and q = 3, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 12, 1, 1, 180, 180, 1, 1, 2565, 38475, 2565, 1, 1, 36936, 7895070, 7895070, 36936, 1, 1, 530712, 1633531536, 23277824388, 1633531536, 530712, 1, 1, 7628985, 337399490610, 69234375473172, 69234375473172, 337399490610, 7628985, 1, 1, 109656180, 69713779364775, 205544107079102610, 2959835141939077584, 205544107079102610, 69713779364775, 109656180, 1
Offset: 1

Views

Author

Roger L. Bagula, Feb 01 2010

Keywords

Examples

			Triangle begins as:
  1;
  1,      1;
  1,     12,          1;
  1,    180,        180,           1;
  1,   2565,      38475,        2565,          1;
  1,  36936,    7895070,     7895070,      36936,      1;
  1, 530712, 1633531536, 23277824388, 1633531536, 530712, 1;
		

Crossrefs

Cf. A002605, A030195, A172375 (q=2), this sequence (q=3).

Programs

  • Mathematica
    f[n_, q_]:= (-I*Sqrt[q])^(n-1)*ChebyshevU[n-1, I*Sqrt[q]/2];
    c[n_, q_]:= Product[f[j, q], {j,n}];
    T[n_, k_, q_]:= c[n-1, q]*c[n, q]/(c[k-1, q]^2*c[n-k, q]*c[n-k+1, q]*f[k, q]);
    Table[T[n, k, 3], {n,12}, {k, n}]//Flatten (* modified by G. C. Greubel, May 07 2021 *)
  • Sage
    @CachedFunction
    def f(n,q): return (-i*sqrt(q))^(n-1)*chebyshev_U(n-1, i*sqrt(q)/2)
    def c(n,q): return product( f(j,q) for j in (1..n) )
    def T(n,k,q): return c(n-1, q)*c(n, q)/(c(k-1, q)^2*c(n-k, q)*c(n-k+1, q)*f(k, q))
    flatten([[T(n,k,3) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, May 07 2021

Formula

T(n, k, q) = c(n-1, q)*c(n, q)/(c(k-1, q)^2*c(n-k, q)*c(n-k+1, q)*f(k, q)), where c(n, q) = Product_{j=1..n} f(j, q), f(n, q) = q*(f(n-1, q) + f(n-2, q)), f(0, q) = 0, f(1, q) = 1, and q = 3.
T(n, k, q) = c(n-1, q)*c(n, q)/(c(k-1, q)^2*c(n-k, q)*c(n-k+1, q)*f(k,q)), where c(n, q) = Product_{j=1..n} f(j, q), and f(n, q) = (-I*sqrt(q))^(n-1)*ChebyshevU(n-1, i*sqrt(q)/2). - G. C. Greubel, May 07 2021

Extensions

Edited by G. C. Greubel, May 07 2021

A103820 Whitney transform of 3^n.

Original entry on oeis.org

1, 4, 16, 61, 232, 880, 3337, 12652, 47968, 181861, 689488, 2614048, 9910609, 37573972, 142453744, 540083149, 2047610680, 7763081488, 29432076505, 111585473980, 423052651456, 1603914376309, 6080901083296, 23054446378816
Offset: 0

Views

Author

Paul Barry, Feb 16 2005

Keywords

Comments

Partial sums of A030195. The Whitney transform maps the sequence with g.f. g(x) to that with g.f. (1/(1-x))g(x(1+x)).

Crossrefs

Equals (A108306(n+1) - 1)/5.

Programs

  • Magma
    I:=[1,4,16]; [n le 3 select I[n] else 4*Self(n-1)-3*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Aug 18 2017
  • Maple
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=3*a[n-1]+3*a[n-2]+1 od: seq(a[n], n=1..33); # Zerinvary Lajos, Dec 14 2008
  • Mathematica
    Join[{a=0,b=1},Table[c=3*b+3*a+1;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 17 2011 *)
    LinearRecurrence[{4, 0, -3}, {1, 4, 16}, 40] (* Vincenzo Librandi, Aug 18 2017 *)

Formula

G.f.: 1/((1-x)(1-3x-3x^2));
a(n) = 4a(n-1) - 3a(n-3);
a(n) = Sum_{k=0..n} (Sum_{i=0..n} C(k, i-k))*3^k.
a(n) = 3(a(n-1) + a(n-2)) + 1, n > 1. [Gary Detlefs, Jun 21 2010]

A134927 a(0)=a(1)=1; a(n) = 3*(a(n-1) + a(n-2)).

Original entry on oeis.org

1, 1, 6, 21, 81, 306, 1161, 4401, 16686, 63261, 239841, 909306, 3447441, 13070241, 49553046, 187869861, 712268721, 2700415746, 10238053401, 38815407441, 147160382526, 557927369901, 2115263257281, 8019571881546, 30404505416481
Offset: 0

Views

Author

Rolf Pleisch, Jan 29 2008

Keywords

Crossrefs

Essentially the same as A108306.

Programs

  • Maple
    a[0]:=1:a[1]:=1:for n from 2 to 50 do a[n]:=3*a[n-1]+3*a[n-2] od: seq(a[n], n=0..33); # Zerinvary Lajos, Dec 14 2008
  • Mathematica
    LinearRecurrence[{3, 3}, {1, 1}, 30]
  • PARI
    a=[1,1];for(i=2,10,a=concat(a,3*a[#a]+3*a[#a-1]));a \\ Charles R Greathouse IV, Oct 04 2011
  • Sage
    from sage.combinat.sloane_functions import recur_gen2
    it = recur_gen2(1,1,3,3)
    [next(it) for i in range(25)] # Zerinvary Lajos, Jun 25 2008
    

Formula

From R. J. Mathar, Jan 31 2008: (Start)
O.g.f.: (-1+2*x)/(-1 + 3*x + 3*x^2).
a(n) = A030195(n+1)-2*A030195(n). (End)
a(n) = A108306(n-1), n>0. - R. J. Mathar, Oct 04 2011
a(n) ~ 3.7912878474...^n, where the constant is A090458. - Charles R Greathouse IV, Oct 04 2011

Extensions

More terms from Joshua Zucker, Feb 23 2008

A172012 Expansion of (2-3*x)/(1-3*x-3*x^2) .

Original entry on oeis.org

2, 3, 15, 54, 207, 783, 2970, 11259, 42687, 161838, 613575, 2326239, 8819442, 33437043, 126769455, 480619494, 1822166847, 6908359023, 26191577610, 99299809899, 376474162527, 1427321917278, 5411388239415, 20516130470079, 77782556128482, 294896059795683
Offset: 0

Views

Author

Claudio Peruzzi (claudio.peruzzi(AT)gmail.com), Jan 22 2010

Keywords

Comments

The case k=3 in a family of sequences a(n) = L(k,n), L(k,n)=k*(L(k,n-1)+L(k,n-2)), L(k,0)=2 and L(k,1)=k.
The case k=1 is A000032 (classic Lucas sequence), k=2 is A080040, this here is essentially A085480.

Programs

  • Mathematica
    CoefficientList[Series[(2-3x)/(1-3x-3x^2),{x,0,30}],x] (* or *) LinearRecurrence[{3,3},{2,3},31] (* Harvey P. Dale, Aug 24 2011 *)

Formula

a(n) = 3*( a(n-1)+a(n-2) ) = 2*A030195(n+1)-3*A030195(n).
L(k,n) = c^n+b^n where c=(k+d)/2 ; b=(k-d)/2; d=sqrt(k*(k+4)) (Binet formula).
a(0)=2, a(1)=3, a(n) = 3*a(n-1)+3*a(n-2). [Harvey P. Dale, Aug 24 2011]
a(n) = [x^n] ( (1 + 3*x + sqrt(1 + 6*x + 21*x^2))/2 )^n for n >= 1. - Peter Bala, Jun 23 2015

Extensions

Edited and extended by R. J. Mathar, Jan 23 2010

A201947 Triangle T(n,k), read by rows, given by (1,1,-1,0,0,0,0,0,0,0,...) DELTA (1,-1,1,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 1, 2, 2, 0, 3, 5, 1, -1, 5, 10, 4, -2, -1, 8, 20, 12, -4, -4, 0, 13, 38, 31, -4, -13, -2, 1, 21, 71, 73, 3, -33, -11, 3, 1, 34, 130, 162, 34, -74, -42, 6, 6, 0, 55, 235, 344, 128, -146, -130, 0, 24, 3, -1
Offset: 0

Views

Author

Philippe Deléham, Dec 06 2011

Keywords

Comments

Row-reversed variant of A123585. Row sums: 2^n.

Examples

			Triangle begins:
1
1, 1
2, 2, 0
3, 5, 1, -1
5, 10, 4, -2, -1
8, 20, 12, -4, -4, 0
13, 38, 31, -4, -13, -2, 1
21, 71, 73, 3, -33, -11, 3, 1
34, 130, 162, 34, -74, -42, 6, 6, 0
55, 235, 344, 128, -146, -130, 0, 24, 3, -1
		

Crossrefs

Cf. Columns: A000045, A001629, A129707.
Diagonals: A010892, A099254, Antidiagonal sums: A158943.

Formula

G.f.: 1/(1-(1+y)*x+(y+1)*(y-1)*x^2).
T(n,0) = A000045(n+1).
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k) - T(n-2,k-2) with T(0,0)= 1 and T(n,k)= 0 if n
Sum_{k, 0<=k<=n} T(n,k)*x^k = (-1)^n*A090591(n), (-1)^n*A106852(n), A000007(n), A000045(n+1), A000079(n), A057083(n), A190966(n+1) for n = -3, -2, -1, 0, 1, 2, 3 respectively.
Sum_{k, 0<=k<=n} T(n,k)*x^(n-k) = A010892(n), A000079(n), A030195(n+1), A180222(n+2) for x = 0, 1, 2, 3 respectively.

A238941 Triangle T(n,k), read by rows given by (1, 1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 5, 8, 4, 1, 13, 21, 13, 6, 1, 34, 55, 40, 25, 7, 1, 89, 144, 120, 90, 33, 9, 1, 233, 377, 354, 300, 132, 51, 10, 1, 610, 987, 1031, 954, 483, 234, 62, 12, 1, 1597, 2584, 2972, 2939, 1671, 951, 308, 86, 13, 1, 4181, 6765, 8495, 8850, 5561, 3573, 1345, 480, 100, 15, 1
Offset: 0

Author

Philippe Deléham, Mar 07 2014

Keywords

Comments

Row sums are A025192(n).

Examples

			Triangle begins:
1;
1, 1;
2, 3, 1;
5, 8, 4, 1;
13, 21, 13, 6, 1;
34, 55, 40, 25, 7, 1;
89, 144, 120, 90, 33, 9, 1;
233, 377, 354, 300, 132, 51, 10, 1;
		

Crossrefs

Cf. Columns: A001519, A001906, A238846, A001871.
Cf. Diagonals: A000012, A032766.

Programs

  • Mathematica
    nmax=10; Column[CoefficientList[Series[CoefficientList[Series[(1 - 2*x + x*y)/(1 - 3*x + x^2 - x^2*y^2), {x, 0, nmax }], x], {y, 0, nmax}], y]] (* Indranil Ghosh, Mar 14 2017 *)

Formula

G.f. for the column k: x^k*(1-2*x)^A059841(k)/(1-3*x+x^2)^A008619(k).
G.f.: (1-2*x+x*y)/(1-3*x+x^2-x^2*y^2).
T(n,k) = 3*T(n-1,k) + T(n-2,k-2) - T(n-2,k), T(0,0) = T(1,0) = T(1,1) = 1, T(n,k) = 0 if k<0 or if k>n.
Sum_{k = 0..n} T(n,k)*x^k = A000007(n), A001519(n), A025192(n), A030195(n+1) for x = -1, 0, 1, 2 respectively.
Sum_{k = 0..n} T(n,k)*3^k = A015525(n) + A015525(n+1).

Extensions

Data section corrected and extended by Indranil Ghosh, Mar 14 2017
Previous Showing 41-50 of 52 results. Next