cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 40 results.

A191369 Numbers n with k divisors such that n-1 and n+1 in binary representation have same number k of 0's as 1's.

Original entry on oeis.org

11, 155, 203, 2164, 2228, 2252, 2276, 2348, 2404, 2452, 2468, 2588, 2612, 2636, 2644, 2675, 2708, 2763, 2836, 2891, 2979, 3148, 3179, 3236, 3275, 3283, 3411, 3475, 3716, 3971, 33723, 33755, 34235, 34523, 34539, 34715, 34771, 35315, 35563, 35571, 35787, 36155, 36411, 36507, 36555, 36579
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 04 2011

Keywords

Crossrefs

Programs

  • PARI
    isA191369(n)=my(b=vecsort(binary(n-1)),k=#b\2); #b==k+k & !b[k] & b[k+1] & b==vecsort(binary(n+1)) & numdiv(n)==k \\ Charles R Greathouse IV, Jun 05 2011

Extensions

a(10) corrected, a(31)-a(46) added by Charles R Greathouse IV, Jun 05 2011

A338483 a(n) is the smallest number having n smaller numbers with the same number of divisors.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 35, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 122, 123, 125, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 177, 178, 183, 185, 187, 194, 201, 202, 203, 205, 206, 209, 213
Offset: 1

Views

Author

Ivan N. Ianakiev, Oct 30 2020

Keywords

Comments

Inspired by A047983.
Are there prime terms greater than 31?

Examples

			The smallest number having two smaller numbers (2 and 3) with the same number of divisors is 5, so a(2) is 5.
		

Crossrefs

Programs

  • Maple
    N:= 500: # for terms before the first term > N
    T:= map(numtheory:-tau, [$1..N]):
    M:= max(T):
    V:= Vector(M):
    for n from 1 to N do
      v:= T[n];
      V[v]:= V[v]+1;
      if not assigned(R[V[v]]) then R[V[v]]:= n fi
    od:
    for nn from 1 while assigned(R[nn]) do od:
    seq(R[i],i=2..nn-1); # Robert Israel, Oct 30 2020
  • Mathematica
    f[n_]:=With[{tau=DivisorSigma[0,n]},Length[Select[Range[n-1],DivisorSigma[0,#]==tau&]]];t=Table[f[n],{n,1,300}]; a[n_]:=FirstPosition[t,n]; Rest[a/@Range[0,65]]//Flatten (* f(n) by Jean-François Alcover at A047983 *)
  • PARI
    f(n) = {my(d=numdiv(n)); sum(k=1, n-1, (numdiv(k)==d))} \\ A047983
    a(n) = my(k=1); while (f(k)!= n, k++); k; \\ Michel Marcus, Oct 30 2020

Formula

A047983(a(n)) = n. - Rémy Sigrist, Dec 06 2020

A385350 Numbers j such that the product of odd proper divisors of j is j.

Original entry on oeis.org

1, 15, 21, 27, 33, 35, 39, 51, 55, 57, 65, 69, 77, 85, 87, 91, 93, 95, 111, 115, 119, 123, 125, 129, 133, 141, 143, 145, 155, 159, 161, 177, 183, 185, 187, 201, 203, 205, 209, 213, 215, 217, 219, 221, 235, 237, 247, 249, 253, 259, 265, 267, 287, 291, 295, 299
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 26 2025

Keywords

Comments

Fixed points of A385349.
Odd terms in A007422.
Also 1 with odd numbers with exactly 4 divisors. - David A. Corneth, Jun 26 2025

Crossrefs

Programs

  • Maple
    q:= n-> n=1 or n::odd and numtheory[tau](n)=4:
    select(q, [$1..500])[];  # Alois P. Heinz, Jun 26 2025
  • Mathematica
    A385349[n_] := Times @@ Select[Divisors[n], # < n && OddQ[#] &]; Select[Range[300], A385349[#] == # &]
  • PARI
    isok(k) = vecprod(select((x->((x%2)==1) && (xMichel Marcus, Jun 26 2025
    
  • PARI
    is(n) = (n == 1) || (bitand(n, 1) && numdiv(n) == 4) \\ David A. Corneth, Jun 26 2025
    
  • Python
    from math import isqrt
    from sympy import primepi, integer_nthroot, primerange
    def A385350(n):
        def f(x): return int(n-1+x-primepi(integer_nthroot(x,3)[0])+(t:=primepi(s:=isqrt(x)))+(t*(t-1)>>1)-sum(primepi(x//k) for k in primerange(3, s+1)))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Jun 27 2025

A065985 Numbers k such that d(k) / 2 is prime, where d(k) = number of divisors of k.

Original entry on oeis.org

6, 8, 10, 12, 14, 15, 18, 20, 21, 22, 26, 27, 28, 32, 33, 34, 35, 38, 39, 44, 45, 46, 48, 50, 51, 52, 55, 57, 58, 62, 63, 65, 68, 69, 74, 75, 76, 77, 80, 82, 85, 86, 87, 91, 92, 93, 94, 95, 98, 99, 106, 111, 112, 115, 116, 117, 118, 119, 122, 123, 124, 125, 129, 133, 134
Offset: 1

Views

Author

Joseph L. Pe, Dec 10 2001

Keywords

Comments

Numbers whose sorted prime signature (A118914) is either of the form {2*p-1} or {1, p-1}, where p is a prime. Equivalently, disjoint union of numbers of the form q^(2*p-1) where p and q are primes, and numbers of the form r * q^(p-1), where p, q and r are primes and r != q. - Amiram Eldar, Sep 09 2024

Crossrefs

Numbers with exactly 2*p divisors: A030513 (p=2), A030515 (p=3), A030628 \ {1} (p=5), A030632 (p=7), A137485 (p=11), A137489 (p=13), A175744 (p=17), A175747 (p=19).

Programs

  • Mathematica
    Select[Range[1, 1000], PrimeQ[DivisorSigma[0, # ] / 2] == True &]
  • PARI
    n=0; for (m=1, 10^9, f=numdiv(m)/2; if (frac(f)==0 && isprime(f), write("b065985.txt", n++, " ", m); if (n==1000, return))) \\ Harry J. Smith, Nov 05 2009
    
  • PARI
    is(n)=n=numdiv(n)/2; denominator(n)==1 && isprime(n) \\ Charles R Greathouse IV, Oct 15 2015

A079836 First column of the triangle in which the n-th row contains n numbers with n divisors that lie between A079835(n) and A079835(n+1).

Original entry on oeis.org

1, 3, 9, 51, 81, 28577, 117649, 594823330, 595067236, 596971504
Offset: 1

Views

Author

Amarnath Murthy, Feb 15 2003

Keywords

Comments

1
3 5
9 25 49
51 55 57 58
81 625 2401 14641 28561
...
The 4th row consists of 4 consecutive elements of A030513, the 5th row 5 consecutive elements of A030514, the 6th and 7th rows consecutive elements of A030515 and A030516, the 8th of A030626, the 9th of A030627 etc. - R. J. Mathar, Mar 29 2007

Crossrefs

Extensions

a(6)-a(7) from R. J. Mathar, Mar 29 2007
a(8)-a(10) from Lambert Herrgesell (zero815(AT)googlemail.com), Feb 08 2008
a(2) and a(9) corrected by Pontus von Brömssen, Jan 14 2024

A137490 Numbers with 27 divisors.

Original entry on oeis.org

900, 1764, 2304, 4356, 4900, 6084, 6400, 10404, 11025, 12100, 12544, 12996, 16900, 19044, 23716, 26244, 27225, 28900, 30276, 30976, 33124, 34596, 36100, 38025, 43264, 49284, 52900, 53361, 56644, 60516, 65025, 66564, 70756, 73984, 74529
Offset: 1

Views

Author

R. J. Mathar, Apr 22 2008

Keywords

Comments

Maple implementation: see A030513.
Numbers of the form p^26 (subset of A089081), p^2*q^2*r^2 (like 900, 1764, 4356, squares of A007304) or p^2*q^8 (like 2304, 6400, subset of the squares of A030628) where p, q and r are distinct primes. - R. J. Mathar, Mar 01 2010

Crossrefs

Programs

Formula

A000005(a(n)) = 27.
Sum_{n>=1} 1/a(n) = (P(2)^3 + 2*P(6) - 3*P(2)*P(4))/6 + P(2)*P(8) - P(10) + P(26) = 0.00453941..., where P is the prime zeta function. - Amiram Eldar, Jul 03 2022

A189986 Numbers of the form 4k+1 having exactly 4 divisors.

Original entry on oeis.org

21, 33, 57, 65, 69, 77, 85, 93, 125, 129, 133, 141, 145, 161, 177, 185, 201, 205, 209, 213, 217, 221, 237, 249, 253, 265, 301, 305, 309, 321, 329, 341, 365, 377, 381, 393, 413, 417, 437, 445, 453, 469, 473, 481, 485, 489, 493, 497, 501, 505, 517, 533, 537, 545
Offset: 1

Views

Author

Juri-Stepan Gerasimov, May 03 2011

Keywords

Comments

Intersection of A016813 and A030513; subsequence of A007422.
Numbers p*q with p == q (mod 4) together with p^3 with p == 1 (mod 4), p and q distinct primes. - Charles R Greathouse IV, May 03 2011

Crossrefs

Programs

  • Magma
    [ n: n in [1..600 by 4] | #Divisors(n) eq 4 ]; // Klaus Brockhaus, May 04 2011
  • Mathematica
    Select[4Range[200]+1,DivisorSigma[0,#]==4&] (* Harvey P. Dale, May 11 2011 *)

Extensions

Corrected (497 inserted) by Klaus Brockhaus, May 04 2011

A306510 Numbers k such that twice the number of divisors of k is equal to the number of divisors of the sum of digits of k.

Original entry on oeis.org

17, 19, 37, 53, 59, 71, 73, 107, 109, 127, 149, 163, 167, 181, 233, 239, 251, 257, 271, 293, 307, 347, 383, 419, 431, 433, 491, 499, 503, 509, 521, 523, 541, 563, 613, 617, 631, 653, 699, 701, 743, 761, 769, 787, 789, 811, 859, 877, 879, 941, 967
Offset: 1

Views

Author

Ctibor O. Zizka, Feb 20 2019

Keywords

Comments

From Robert Israel, Jul 28 2020: (Start)
The first even term is a(2747)=68998.
Includes primes p such that A007953(p) is in A030513. (End)

Examples

			For k = 19, 2*A000005(19) = A000005(A007953(19)), 2*A000005(19) = A000005(10), thus k = 19 is a member of the sequence.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) 2*numtheory:-tau(n) = numtheory:-tau(convert(convert(n,base,10),`+`)) end proc:
    select(filter, [$1..1000]); # Robert Israel, Jul 28 2020
  • PARI
    isok(k) = (k >= 1) && (2*numdiv(k) == numdiv(sumdigits(k, 10))); \\ Daniel Suteu, Feb 20 2019

Formula

2*A000005(k) = A000005(A007953(k)).

A307980 Numbers k whose number of divisors is the square of the number of decimal digits of k.

Original entry on oeis.org

1, 10, 14, 15, 21, 22, 26, 27, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 100, 196, 225, 256, 441, 484, 676, 1000, 1026, 1032, 1064, 1110, 1122, 1128, 1144, 1155, 1160, 1190, 1218, 1230, 1240, 1242, 1254, 1272, 1288, 1290, 1302, 1326, 1330, 1365, 1408
Offset: 1

Views

Author

Bernard Schott, May 08 2019

Keywords

Comments

The terms with an odd number of digits are squares.
The terms with 2 digits are squarefree semiprimes (cf. A006881) Union {27}. The terms with 3 digits belong to A030627 (numbers with 9 divisors) and the ones with 4 digits belong to A030634 (numbers with 16 divisors).
The number of terms b(n) with n digits begins with: 1, 30, 7, 753, 3, 11409, 2, ... When there are an odd number of digits, the number of terms decreases from b(3) = 7, b(5) = 3, b(7) = 2. Is there a 2q+1 such that b(2q+1) = 0?
The sequence is infinite because 10^k is the term for each k. We have tau(10^k) = tau(2^k)*tau(5^k) = (k + 1)^2 and 10^k has k + 1 digits. - Marius A. Burtea, May 09 2019
a(n) >= 1, for any n, so b(2q+1)>= 1 for any q. - Marius A. Burtea, May 09 2019

Examples

			65 is a term with 2 digits and 4 divisors: {1, 5, 13, 65}.
484 is a term with 3 digits and 9 divisors: {1, 2, 4, 11, 22, 44, 121, 242, 484}.
		

Crossrefs

Cf. A095862 (number of decimal digits = number of divisors).
Cf. A006881 (squarefree semiprimes).
Cf. A030513 (numbers with 4 divisors), A030627 (numbers with 9 divisors), A030634 (numbers with 16 divisors).
Cf. A011557 (subsequence).

Programs

  • Magma
    [n:n in [1..1500]|NumberOfDivisors(n) eq (#Intseq(n))^2]; // Marius A. Burtea, May 09 2019
  • PARI
    is(n) = numdiv(n) == #digits(n)^2 \\ David A. Corneth, May 08 2019
    

A334802 Positive integers of the form x^4 - y^4 that have exactly 4 divisors.

Original entry on oeis.org

15, 65, 671, 3439, 12209, 102719, 113521, 178991, 246559, 515201, 1124111, 1342879, 2964961, 3940399, 9951391, 21254449, 27220159, 34209169, 45259649, 48986321, 70710641, 92110289, 93084991, 125620111, 131687681, 144402721, 201792079, 211782751, 276694241
Offset: 1

Views

Author

C. Kenneth Fan, May 12 2020

Keywords

Comments

If a(n) = pq, where p > q are both prime, then p is the hypotenuse and q is a leg of a primitive Pythagorean triple. (x^4-y^4 = (x^2+y^2)(x+y)(x-y), hence x-y=1 and x^2+y^2 and x+y are both prime. Note that x^2+y^2 can never be (x+y)^2 so a(n) is never the cube of a prime.)

Examples

			2^4 - 1^4 = 15 = 3*5 and (3, 4, 5) is a Pythagorean triple, so 15 is a term.
6^4 - 5^4 = 671 = 11*61 and (11, 60, 61) is a Pythagorean triple, so 671 is a term.
		

Crossrefs

Cf. A068501.
Intersection of A030513 and A147857.

Programs

  • Maple
    f:= proc(y) if isprime(2*y+1) and isprime(2*y^2 + 2*y+1) then (2*y+1)*(2*y^2+2*y+1) fi end proc:
    map(f, [$1..1000]); # Robert Israel, Jun 16 2020
  • Mathematica
    Select[(#^4 - (#-1)^4) & /@ Range[420], DivisorSigma[0, #] == 4 &] (* Giovanni Resta, May 12 2020 *)

Formula

a(n) = (b(n)+1)^4 - b(n)^4 with b(n)=A068501(n).
a(n) = A048161(n)*A067756(n).
Previous Showing 31-40 of 40 results.