cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 65 results. Next

A071397 Rounded total surface area of a regular dodecahedron with edge length n.

Original entry on oeis.org

0, 21, 83, 186, 330, 516, 743, 1012, 1321, 1672, 2065, 2498, 2973, 3489, 4047, 4645, 5285, 5967, 6689, 7453, 8258, 9105, 9993, 10922, 11892, 12904, 13957, 15051, 16186, 17363, 18581, 19841, 21141, 22483, 23866, 25291, 26757, 28264, 29812
Offset: 0

Views

Author

Rick L. Shepherd, May 28 2002

Keywords

Examples

			a(4)=330 because round(3*4^2*sqrt(25 + 10*sqrt(5))) = round(48*6.88190...) = round(330.331...) = 330.
		

References

  • S. Selby, editor, CRC Basic Mathematical Tables, CRC Press, 1970, pp. 10-11.

Crossrefs

Cf. A070169 (tetrahedron), A033581 (cube), A071396 (octahedron), A071398 (icosahedron), A071401 (volume of dodecahedron).

Programs

  • Magma
    [Round(3 * n^2 * Sqrt(25+10*Sqrt(5))): n in [0..50]]; // Vincenzo Librandi, May 21 2011
  • Mathematica
    With[{c=3*Sqrt[25+10*Sqrt[5]]},Round[c*Range[0,40]^2]] (* Harvey P. Dale, Jul 06 2018 *)
  • PARI
    for(n=0,100,print1(round(3*n^2*sqrt(25+10*sqrt(5))),","))
    

Formula

a(n) = round(3 * n^2 * sqrt(25 + 10*sqrt(5))).

A071398 Rounded total surface area of a regular icosahedron with edge length n.

Original entry on oeis.org

0, 9, 35, 78, 139, 217, 312, 424, 554, 701, 866, 1048, 1247, 1464, 1697, 1949, 2217, 2503, 2806, 3126, 3464, 3819, 4192, 4581, 4988, 5413, 5854, 6313, 6790, 7283, 7794, 8323, 8868, 9431, 10011, 10609, 11224, 11856, 12505, 13172, 13856, 14558, 15277
Offset: 0

Views

Author

Rick L. Shepherd, May 29 2002

Keywords

Examples

			a(4)=139 because round(5*4^2*sqrt(3)) = round(80*1.73205...) = round(138.56...) = 139.
		

References

  • S. Selby, editor, CRC Basic Mathematical Tables, CRC Press, 1970, pp. 10-11.

Crossrefs

Cf. A070169 (tetrahedron), A033581 (cube), A071396 (octahedron), A071397 (dodecahedron), A071402 (volume of icosahedron).

Programs

  • Magma
    [Round(5 * n^2 * Sqrt(3)): n in [0..50]]; // Vincenzo Librandi, May 21 2011
    
  • Mathematica
    With[{c=5Sqrt[3]},Round[c Range[0,50]^2]] (* Harvey P. Dale, May 20 2011 *)
  • PARI
    for(n=0,100,print1(round(5*n^2*sqrt(3)),","))
    
  • Python
    from math import isqrt
    def A071398(n): return (m:=isqrt(k:=75*n**4))+int(k>m*(m+1)) # Chai Wah Wu, Jun 05 2025

Formula

a(n) = round(5 * n^2 * sqrt(3)).

A083854 Numbers that are squares, twice squares, three times squares, or six times squares, i.e., numbers whose squarefree part divides 6.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 25, 27, 32, 36, 48, 49, 50, 54, 64, 72, 75, 81, 96, 98, 100, 108, 121, 128, 144, 147, 150, 162, 169, 192, 196, 200, 216, 225, 242, 243, 256, 288, 289, 294, 300, 324, 338, 361, 363, 384, 392, 400, 432, 441, 450, 484, 486, 507
Offset: 0

Views

Author

Henry Bottomley, May 06 2003

Keywords

Comments

It is simple to divide equilateral triangles into these numbers of congruent parts: squares by making smaller equilateral triangles; 6*squares by dividing each small equilateral triangle by its medians into small right triangles; and 2*squares or 3*squares by recombining three or two of these small right triangles.

Crossrefs

Programs

  • Mathematica
    mx = 23; Sort@Select[Flatten@Table[{1, 2, 3, 6} n^2, {n, mx}], # <= mx^2 &] (* Ivan Neretin, Nov 08 2016 *)

Formula

a(n) is bounded below by 0.137918...*n^2 where 0.137918... = 3*(3-2*sqrt(2))*(2-sqrt(3)); the error appears to be O(n).
Sum_{n>=1} 1/a(n) = Pi^2/3 (A195055). - Amiram Eldar, Dec 19 2020

A202804 a(n) = n*(6*n+4).

Original entry on oeis.org

0, 10, 32, 66, 112, 170, 240, 322, 416, 522, 640, 770, 912, 1066, 1232, 1410, 1600, 1802, 2016, 2242, 2480, 2730, 2992, 3266, 3552, 3850, 4160, 4482, 4816, 5162, 5520, 5890, 6272, 6666, 7072, 7490, 7920, 8362, 8816, 9282, 9760, 10250, 10752, 11266, 11792, 12330
Offset: 0

Views

Author

Jeremy Gardiner, Dec 24 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 10, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. Opposite numbers to the members of A033579 in the same spiral. - Omar E. Pol, Jul 17 2012
Partial sums give A163815. - Leo Tavares, Feb 25 2022

Crossrefs

Programs

  • Maple
    A202804:=n->n*(6*n+4): seq(A202804(n), n=0..100); # Wesley Ivan Hurt, Apr 09 2017
  • Mathematica
    Table[n(6n+4),{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{0,10,32},50] (* Harvey P. Dale, Dec 28 2015 *)
  • PARI
    x='x + O('x^50); concat([0], Vec(-2*x*(5 + x)/(x - 1)^3)) \\ Indranil Ghosh, Apr 10 2017

Formula

a(n) = 2*n(3*n+2) = 6*n^2 + 4*n = 2*A045944(n).
a(n) = A080859(n) - 1. - Omar E. Pol, Jul 18 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Dec 28 2015
G.f.: 2*x*(5 + x)/(1 - x)^3. - Indranil Ghosh, Apr 10 2017
a(n) = A003154(n+1) - A005408(n). - Leo Tavares, Feb 25 2022
From Amiram Eldar, Mar 01 2022: (Start)
Sum_{n>=1} 1/a(n) = (Pi/sqrt(3) - 3*log(3) + 3)/8.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(4*sqrt(3)) - 3/8. (End)
E.g.f.: 2*exp(x)*x*(5 + 3*x). - Elmo R. Oliveira, Dec 12 2024

A249327 Rectangular array T(n,k) = f(n)*k^2, where f = A005117 (squarefree numbers); n, k >= 1; read by antidiagonals.

Original entry on oeis.org

1, 4, 2, 9, 8, 3, 16, 18, 12, 5, 25, 32, 27, 20, 6, 36, 50, 48, 45, 24, 7, 49, 72, 75, 80, 54, 28, 10, 64, 98, 108, 125, 96, 63, 40, 11, 81, 128, 147, 180, 150, 112, 90, 44, 13, 100, 162, 192, 245, 216, 175, 160, 99, 52, 14, 121, 200, 243, 320, 294, 252, 250
Offset: 1

Views

Author

Clark Kimberling, Oct 26 2014

Keywords

Comments

Every positive integer occurs exactly once.

Examples

			Northwest corner:
1   4    9    16   25    36    49
2   8    18   32   50    72    98
3   12   27   48   75    108   147
5   20   45   80   125   180   245
6   24   54   96   150   216   294
		

Crossrefs

Cf. A005117, A000037 (is partitioned by the rows of A249327, excluding the first).

Programs

  • Mathematica
    z = 20; f = Select[Range[10000], SquareFreeQ[#] &];
    u[n_, k_] := f[[n]]*k^2; t = Table[u[n, k], {n, 1, 20}, {k, 1, 20}];
    TableForm[t] (* A249327 array *)
    Table[u[k, n - k + 1], {n, 1, 15}, {k, 1, n}] // Flatten (* A249327 sequence *)

Formula

T(1,k) = A000290(k), T(2,k) = A001105(k), T(3,k) = A033428(k), T(4,k) = A033429(k), T(5,.) through T(10,.) are A033581, A033582, A033583, A033584, A152742 and A144555 without initial 0. - M. F. Hasler, Oct 31 2014

A000535 Card matching: coefficients B[n,2] of t^2 in the reduced hit polynomial A[n,n,n](t).

Original entry on oeis.org

0, 27, 378, 4536, 48600, 489780, 4738104, 44535456, 409752432, 3708359550, 33125746500, 292779558720, 2565087894720, 22307854940280, 192788833482000, 1657111548654720, 14176605442521312, 120779466450505758, 1025230099571720676, 8674221270307971600
Offset: 1

Views

Author

Keywords

Comments

Number of permutations of 3 distinct letters (ABC) each with n copies such that two (2) fixed points. E.g., if AAAAABBBBBCCCCC n=3*5 letters permutations then two fixed points n5=48600. - Zerinvary Lajos, Feb 02 2006
The definition uses notations of Riordan (1958), except for use of n instead of p. - M. F. Hasler, Sep 22 2015

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 193.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    a[n_] := 3*Binomial[n, 2]*Sum[Binomial[n, k+2]*Binomial[n, k]*Binomial[n-2, k], {k, 0, n-2}] + 3n^2*Sum[Binomial[n, k+1]*Binomial[n-1, k+1]*Binomial[ n-1, k], {k, 0, n-2}] (* Jean-François Alcover, Feb 09 2016 *)
  • PARI
    A000535(n)=3*binomial(n,2)*sum(k=0,n-2,binomial(n,k+2)*binomial(n,k)*binomial(n-2,k))+3*n^2*sum(k=0,n-2,binomial(n,k+1)*binomial(n-1,k+1)*binomial(n-1,k)) \\ M. F. Hasler, Sep 30 2015

Formula

a(n) = 3*binomial(n, 2)*Sum_{k=0..n-2} binomial(n, k+2)*binomial(n, k)*binomial(n-2, k) + 3*n^2*Sum_{k=0..n-2} binomial(n, k+1)*binomial(n-1, k+1)*binomial(n-1, k).
a(n) = 3(n-1)*n^3 3F2(1-n, 1-n, 2-n; 2, 2; -1) + (3/4)(n-1)^2 n^2 3F2(2-n, 2-n, -n; 1, 3; -1), where 3F2 is the hypergeometric function 3F2. - Jean-François Alcover, Feb 09 2016
a(n) ~ 3^(3/2) * 2^(3*n - 2) * n / Pi. - Vaclav Kotesovec, Jun 10 2019

Extensions

More terms from Vladeta Jovovic, Apr 26 2000
More terms from Emeric Deutsch, Feb 19 2004
More explicit definition by M. F. Hasler, Sep 22 2015

A064763 a(n) = 28*n^2.

Original entry on oeis.org

0, 28, 112, 252, 448, 700, 1008, 1372, 1792, 2268, 2800, 3388, 4032, 4732, 5488, 6300, 7168, 8092, 9072, 10108, 11200, 12348, 13552, 14812, 16128, 17500, 18928, 20412, 21952, 23548, 25200, 26908, 28672, 30492, 32368, 34300, 36288, 38332
Offset: 0

Views

Author

Roberto E. Martinez II, Oct 18 2001

Keywords

Comments

Number of edges in a complete 8-partite graph of order 8n, K_n,n,n,n,n,n,n,n.
Sequence found by reading the line from 0, in the direction 0, 28, ..., in the square spiral whose vertices are the generalized 16-gonal numbers. - Omar E. Pol, Jul 03 2014

Crossrefs

Similar sequences are listed in A244630.

Programs

Formula

a(n) = 56*n + a(n-1) - 28 (with a(0)=0). - Vincenzo Librandi, Aug 07 2010
a(n) = 28*A000290(n) = 14*A001105(n) = 7*A016742(n) = 4*A033582(n) = 2*A144555(n). - Omar E. Pol, Jul 03 2014
From Vincenzo Librandi, Mar 30 2015: (Start)
G.f.: 28*x*(1+x)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
a(n) = t(8*n) - 8*t(n), where t(i) = i*(i+k)/2 for any k. Special case (k=1): a(n) = A000217(8*n) - 8*A000217(n). - Bruno Berselli, Aug 31 2017
From Elmo R. Oliveira, Dec 01 2024: (Start)
E.g.f.: 28*x*(1 + x)*exp(x).
a(n) = n*A135628(n). (End)

A307253 Number of triangles larger than size=1 in a matchstick-made hexagon with side length n.

Original entry on oeis.org

0, 0, 14, 62, 166, 346, 624, 1020, 1556, 2252, 3130, 4210, 5514, 7062, 8876, 10976, 13384, 16120, 19206, 22662, 26510, 30770, 35464, 40612, 46236, 52356, 58994, 66170, 73906, 82222, 91140, 100680, 110864, 121712, 133246, 145486, 158454, 172170, 186656, 201932
Offset: 0

Views

Author

John King, Mar 31 2019

Keywords

Crossrefs

Cf. A033581 (number of size=1 triangles), A045949 (total number of triangles).
The hexagon matchstick sequences are as follows: number of matchsticks: A045945; for T1 triangles: A033581; for larger triangles: this sequence and for total triangles: A045949. There are analogs for triangles (see A045943) and stars (see A045946).

Programs

  • Mathematica
    LinearRecurrence[{3,-2,-2,3,-1},{0, 0, 14, 62, 166},166] (* Metin Sariyar, Oct 27 2019 *)
  • PARI
    concat([0,0], Vec(2*x^2*(7 + 10*x + 4*x^2) / ((1 - x)^4*(1 + x)) + O(x^40))) \\ Colin Barker, Apr 02 2019

Formula

a(n) = floor(n*(14*n^2+9*n+2)/4)-6*n^2.
G.f.: 2*x^2*(4*x^2+10*x+7)/((x+1)*(x-1)^4).
a(n) = A045949(n) - A033581(n).
a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5) for n>4. - Colin Barker, Apr 02 2019

A354594 a(n) = n^2 + 2*floor(n/2)^2.

Original entry on oeis.org

0, 1, 6, 11, 24, 33, 54, 67, 96, 113, 150, 171, 216, 241, 294, 323, 384, 417, 486, 523, 600, 641, 726, 771, 864, 913, 1014, 1067, 1176, 1233, 1350, 1411, 1536, 1601, 1734, 1803, 1944, 2017, 2166, 2243, 2400, 2481, 2646, 2731, 2904
Offset: 0

Views

Author

David Lovler, Jun 01 2022

Keywords

Comments

The first bisection is A033581, the second bisection is A080859. - Bernard Schott, Jun 07 2022

Crossrefs

Programs

  • Mathematica
    a[n_] := n^2 + 2 Floor[n/2]^2
    Table[a[n], {n, 0, 90}]    (* A354594 *)
    LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 6, 11, 24}, 60]
  • PARI
    a(n) = n^2 + 2*(n\2)^2;

Formula

a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5), n >= 5.
a(n) = A000290(n) + 2*A008794(n).
G.f.: x*(1 + 5*x + 3*x^2 + 3*x^3)/((1 - x)^3*(1 + x)^2).
E.g.f.: (x*(1 + 3*x)*cosh(x) + (1 + 3*x + 3*x^2)*sinh(x))/2. - Stefano Spezia, Jun 07 2022

A221912 Partial sums of floor(n/12).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 125, 130, 135, 140, 145, 150, 155
Offset: 0

Views

Author

Philippe Deléham, Mar 27 2013

Keywords

Comments

Apart from the initial zeros, the same as A008730.

Examples

			..0....0....0....0....0....0....0....0....0....0....0....0
..1....2....3....4....5....6....7....8....9...10...11...12
.14...16...18...20...22...24...26...28...30...32...34...36
.39...42...45...48...51...54...57...60...63...66...69...72
.76...80...84...88...92...96..100..104..108..112..116..120
125..130..135..140..145..150..155..160..165..170..175..180
186..192..198..204..210..216..222..228..234..240..246..252
259..266..273..280..287..294..301..308..315..322..329..336
344..352..360..368..376..384..392..400..408..416..424..432
441..450..459..468..477..486..495..504..513..522..531..540
...
		

Crossrefs

Programs

  • Mathematica
    Accumulate[Floor[Range[0,70]/12]] (* or *) LinearRecurrence[{2,-1,0,0,0,0,0,0,0,0,0,1,-2,1},{0,0,0,0,0,0,0,0,0,0,0,0,1,2},70] (* Harvey P. Dale, Mar 23 2015 *)

Formula

a(12n) = A051866(n).
a(12n+1) = A139267(n).
a(12n+2) = A094159(n).
a(12n+3) = A033579(n).
a(12n+4) = A049452(n).
a(12n+5) = A033581(n).
a(12n+6) = A049453(n).
a(12n+7) = A033580(n).
a(12n+8) = A195319(n).
a(12n+9) = A202804(n).
a(12n+10) = A211014(n).
a(12n+11) = A049598(n).
G.f.: x^12/((1-x)^2*(1-x^12)).
a(0)=0, a(1)=0, a(2)=0, a(3)=0, a(4)=0, a(5)=0, a(6)=0, a(7)=0, a(8)=0, a(9)=0, a(10)=0, a(11)=0, a(12)=1, a(13)=2, a(n)=2*a(n-1)- a(n-2)+ a(n-12)- 2*a(n-13)+ a(n-14). - Harvey P. Dale, Mar 23 2015
Previous Showing 41-50 of 65 results. Next