cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 83 results. Next

A326850 Number of strict integer partitions of n whose maximum part divides n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 4, 1, 5, 2, 6, 1, 10, 1, 10, 5, 12, 1, 23, 1, 18, 15, 23, 1, 49, 1, 34, 36, 38, 1, 106, 1, 54, 79, 81, 1, 189, 1, 124, 162, 104, 1, 412, 1, 145, 307, 289, 1, 608, 12, 437, 559, 256, 1, 1432, 1, 340, 981, 976, 79, 1730, 1
Offset: 0

Views

Author

Gus Wiseman, Jul 28 2019

Keywords

Examples

			The initial terms count the following partitions:
   1: (1)
   2: (2)
   3: (3)
   4: (4)
   5: (5)
   6: (6)
   6: (3,2,1)
   7: (7)
   8: (8)
   8: (4,3,1)
   9: (9)
  10: (10)
  10: (5,4,1)
  10: (5,3,2)
  11: (11)
  12: (12)
  12: (6,5,1)
  12: (6,4,2)
  12: (6,3,2,1)
  13: (13)
  14: (14)
  14: (7,6,1)
  14: (7,5,2)
  14: (7,4,3)
  14: (7,4,2,1)
  15: (15)
  15: (5,4,3,2,1)
		

Crossrefs

Positions of 1's appear to be A308168.
The non-strict case is given by A067538.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Divisible[n,Max[#]]&]],{n,0,30}]

A343378 Number of strict integer partitions of n that are empty or such that (1) the smallest part divides every other part and (2) the greatest part is divisible by every other part.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 3, 6, 5, 4, 6, 6, 4, 8, 6, 7, 9, 8, 5, 12, 9, 8, 9, 11, 6, 14, 10, 10, 11, 10, 10, 20, 12, 12, 15, 18, 10, 21, 13, 15, 19, 17, 11, 27, 19, 20, 20, 25, 13, 27, 22, 26, 23, 24, 15, 34, 23, 21, 27, 30, 19, 38, 24, 26, 27, 37
Offset: 0

Views

Author

Gus Wiseman, Apr 16 2021

Keywords

Comments

Alternative name: Number of strict integer partitions of n with a part dividing all the others and a part divisible by all the others.

Examples

			The a(1) = 1 through a(15) = 6 partitions (A..F = 10..15):
  1  2  3   4   5   6   7    8   9    A    B    C     D    E    F
        21  31  41  42  61   62  63   82   A1   84    C1   C2   A5
                    51  421  71  81   91   821  93    841  D1   C3
                                 621  631       A2    931  842  E1
                                                B1    A21       C21
                                                6321            8421
		

Crossrefs

The first condition alone gives A097986.
The non-strict version is A130714 (Heinz numbers are complement of A343343).
The second condition alone gives A343347.
The opposite version is A343379.
The half-opposite versions are A343380 and A343381.
The strict complement is counted by A343382.
A000009 counts strict partitions.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A018818 counts partitions into divisors (strict: A033630).
A167865 counts strict chains of divisors > 1 summing to n.
A339564 counts factorizations with a selected factor.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],#=={}||UnsameQ@@#&&And@@IntegerQ/@(#/Min@@#)&&And@@IntegerQ/@(Max@@#/#)&]],{n,0,30}]

A074971 Number of partitions of n into distinct parts of order n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 6, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 4, 1, 2, 1, 1, 1, 32, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 25, 1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 1, 24, 1, 1, 1, 2, 1, 24, 1, 1, 1, 1, 1, 12, 1, 1, 1, 3, 1, 2
Offset: 1

Views

Author

Vladeta Jovovic, Oct 05 2002

Keywords

Comments

Order of partition is lcm of its parts.

Examples

			The a(36) = 6 partitions are (36), (18,12,6), (18,12,4,2), (18,12,3,2,1), (18,9,4,3,2), (12,9,6,4,3,2). - _Gus Wiseman_, Aug 01 2018
		

Crossrefs

Programs

  • PARI
    A074971(n) = { my(q=0); fordiv(n,i,my(p=1); fordiv(i,j,p *= (1 + 'x^j)); q += moebius(n/i)*p); polcoeff(q,n); }; \\ Antti Karttunen, Dec 19 2018

Formula

Coefficient of x^n in expansion of Sum_{i divides n} mu(n/i)*Product_{j divides i} (1+x^j).

A343345 Number of integer partitions of n that are empty, or have smallest part dividing all the others, but do not have greatest part divisible by all the others.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 1, 4, 6, 11, 16, 29, 36, 59, 79, 115, 149, 216, 270, 379, 473, 634, 793, 1063, 1292, 1689, 2079, 2667, 3241, 4142, 4982, 6291, 7582, 9434, 11321, 14049, 16709, 20545, 24490, 29860, 35380, 43004, 50741, 61282, 72284, 86680, 101906, 121990
Offset: 0

Views

Author

Gus Wiseman, Apr 15 2021

Keywords

Comments

First differs from A343346 at a(14) = 79, A343346(14) = 80.
Alternative name: Number of integer partitions of n with a part dividing all the others, but with no part divisible by all the others.

Examples

			The a(6) = 1 through a(11) = 16 partitions:
  (321)  (3211)  (431)    (531)     (541)      (641)
                 (521)    (3321)    (721)      (731)
                 (3221)   (4311)    (4321)     (4331)
                 (32111)  (5211)    (5221)     (5321)
                          (32211)   (5311)     (5411)
                          (321111)  (32221)    (7211)
                                    (33211)    (33221)
                                    (43111)    (43211)
                                    (52111)    (52211)
                                    (322111)   (53111)
                                    (3211111)  (322211)
                                               (332111)
                                               (431111)
                                               (521111)
                                               (3221111)
                                               (32111111)
		

Crossrefs

The first condition alone gives A083710.
The half-opposite versions are A130714 and A343342.
The Heinz numbers of these partitions are 1 and A343340.
The second condition alone gives A343341.
The opposite version is A343344.
The strict case is A343381.
A000009 counts strict partitions.
A000041 counts partitions.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A018818 counts partitions into divisors (strict: A033630).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],#=={}||And@@IntegerQ/@(#/Min@@#)&&!And@@IntegerQ/@(Max@@#/#)&]],{n,0,30}]

A343381 Number of strict integer partitions of n with a part dividing all the others but no part divisible by all the others.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 0, 2, 1, 3, 3, 6, 4, 9, 9, 14, 14, 20, 20, 30, 30, 39, 44, 59, 59, 77, 85, 106, 114, 145, 150, 191, 205, 247, 267, 328, 345, 418, 455, 544, 582, 699, 745, 886, 962, 1117, 1209, 1430, 1523, 1778, 1932, 2225, 2406, 2792, 3001, 3456, 3750
Offset: 0

Views

Author

Gus Wiseman, Apr 16 2021

Keywords

Comments

Alternative name: Number of strict integer partitions of n that are empty or (1) have smallest part dividing all the others and (2) have greatest part not divisible by all the others.

Examples

			The a(6) = 1 through a(16) = 14 partitions (empty column indicated by dot, A..D = 10..13):
  321   .  431   531   541    641    642    751    761    861     862
           521         721    731    651    5431   851    951     871
                       4321   5321   741    6421   941    A41     961
                                     831    7321   A31    B31     A42
                                     921           B21    6531    B41
                                     5421          6431   7431    D21
                                                   6521   7521    6541
                                                   7421   9321    7531
                                                   8321   54321   7621
                                                                  8431
                                                                  8521
                                                                  9421
                                                                  A321
                                                                  64321
		

Crossrefs

The first condition alone gives A097986.
The non-strict version is A343345 (Heinz numbers: A343340).
The second condition alone gives A343377.
The half-opposite versions are A343378 and A343379.
The opposite (and dual) version is A343380.
A000005 counts divisors.
A000009 counts strict partitions.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A018818 counts partitions into divisors (strict: A033630).
A167865 counts strict chains of divisors > 1 summing to n.
A339564 counts factorizations with a selected factor.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],#=={}||UnsameQ@@#&&And@@IntegerQ/@(#/Min@@#)&&!And@@IntegerQ/@(Max@@#/#)&]],{n,0,30}]

A225245 Number of partitions of n into distinct squarefree divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 2, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 4, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 3, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 3, 1, 1, 0, 0, 1, 3, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 1, 2, 1, 1
Offset: 0

Views

Author

Reinhard Zumkeller, May 05 2013

Keywords

Comments

a(n) <= A033630(n);
a(n) = A033630(n) iff n is squarefree: a(A005117(n)) = A033630(A005117(n));
a(A225353(n)) = 0; a(A225354(n)) > 0.

Examples

			a(2*3)     = a(6)  = #{6, 3+2+1} = 2;
a(2*2*3)   = a(12) = #{6+3+2+1} = 1;
a(2*3*5)   = a(30) = #{30, 15+10+5, 15+10+3+2, 15+6+5+3+1} = 4;
a(2*2*3*5) = a(60) = #{30+15+10+5, 30+15+10+3+2, 30+15+6+5+3+1} = 3;
a(2*3*7)   = a(42) = #{42, 21+14+7, 21+14+6+1} = 3;
a(2*2*3*7) = a(84) = #{42+21+14+7, 42+21+14+6+1} = 2.
		

Crossrefs

Programs

  • Haskell
    a225245 n = p (a206778_row n) n where
       p _      0 = 1
       p []     _ = 0
       p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
  • Mathematica
    a[n_] := If[n == 0, 1, Coefficient[Product[If[MoebiusMu[d] != 0, 1+x^d, 1], {d, Divisors[n]}], x, n]];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Nov 08 2021, after Ilya Gutkovskiy *)

Formula

a(n) = [x^n] Product_{d|n, mu(d) != 0} (1 + x^d), where mu() is the Moebius function (A008683). - Ilya Gutkovskiy, Jul 26 2017

A343380 Number of strict integer partitions of n with no part dividing all the others but with a part divisible by all the others.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 1, 0, 1, 1, 4, 0, 1, 0, 2, 0, 4, 0, 3, 1, 2, 2, 5, 0, 5, 3, 4, 1, 9, 1, 5, 2, 4, 5, 11, 1, 6, 4, 11, 3, 13, 5, 10, 4, 11, 8, 14, 3, 10, 6, 9, 3, 15, 6, 14, 10, 18, 8
Offset: 0

Views

Author

Gus Wiseman, Apr 16 2021

Keywords

Comments

Alternative name: Number of strict integer partitions of n that are either empty or (1) have smallest part not dividing all the others and (2) have greatest part divisible by all the others.

Examples

			The a(11) = 1 through a(29) = 4 partitions (empty columns indicated by dots, A..O = 10..24):
  632  .  .  .  .  .  A52  .  C43  .  C432  C64  E72   .  C643  .  K52    .  I92
                      C32                        F53               C6432     K54
                                                 I32                         O32
                                                 C632                        I632
		

Crossrefs

The first condition alone gives A341450.
The non-strict version is A343344 (Heinz numbers: A343339).
The second condition alone gives A343347.
The half-opposite versions are A343378 and A343379.
The opposite (and dual) version is A343381.
A000009 counts strict partitions.
A000041 counts partitions.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A018818 counts partitions into divisors (strict: A033630).
A167865 counts strict chains of divisors > 1 summing to n.
A339564 counts factorizations with a selected factor.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],#=={}||UnsameQ@@#&&!And@@IntegerQ/@(#/Min@@#)&&And@@IntegerQ/@(Max@@#/#)&]],{n,0,30}]

A211111 Number of partitions of n into distinct divisors > 1 of n.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 19, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 1, 14, 1
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 01 2012

Keywords

Comments

a(A136446(n)) > 1.

Examples

			n=12: the divisors > 1 of 12 are {2,3,4,6,12}, there are exactly two subsets which sum up to 12, namely {12} and {2,4,6}, therefore a(12) = 2;
a(13) = #{13} = 1, because 13 is prime, having no other divisor > 1;
n=14: the divisors > 1 of 14 are {2,7,14}, {14} is the only subset summing up to 14, therefore a(14) = 1.
		

Crossrefs

Programs

  • Haskell
    a211111 n = p (tail $ a027750_row n) n where
       p _  0 = 1
       p [] _ = 0
       p (k:ks) m | m < k     = 0
                   | otherwise = p ks (m - k) + p ks m
  • Maple
    with(numtheory):
    a:= proc(n) local b, l; l:= sort([(divisors(n) minus {1})[]]):
          b:= proc(m, i) option remember; `if`(m=0, 1, `if`(i<1, 0,
                 b(m, i-1)+`if`(l[i]>m, 0, b(m-l[i], i-1))))
              end; forget(b):
          b(n, nops(l))
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Nov 18 2021
  • Mathematica
    a[n_] := Count[IntegerPartitions[n, All, Divisors[n] // Rest], P_ /; Reverse[P] == Union[P]];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Nov 18 2021 *)

Extensions

a(0)=1 prepended by Alois P. Heinz, Nov 18 2021

A343343 Numbers with either no prime index dividing, or no prime index divisible by all the other prime indices.

Original entry on oeis.org

1, 15, 30, 33, 35, 45, 51, 55, 60, 66, 69, 70, 75, 77, 85, 90, 91, 93, 95, 99, 102, 105, 110, 119, 120, 123, 132, 135, 138, 140, 141, 143, 145, 150, 153, 154, 155, 161, 165, 170, 175, 177, 180, 182, 186, 187, 190, 195, 198, 201, 203, 204, 205, 207, 209, 210
Offset: 1

Views

Author

Gus Wiseman, Apr 15 2021

Keywords

Comments

After 1, first differs from A318992 in lacking 390, with prime indices {1,2,3,6}.
First differs from A343337 in having 195, with prime indices {2,3,6}.
Alternative name: 1 and numbers where either the smallest prime index is not a divisor of all the other prime indices, or the greatest prime index is not divisible by all the other prime indices.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also Heinz numbers of partitions that either empty, have smallest part not dividing all the others, or have greatest part not divisible by all the others (counted by A343346). The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}            90: {1,2,2,3}      141: {2,15}
     15: {2,3}         91: {4,6}          143: {5,6}
     30: {1,2,3}       93: {2,11}         145: {3,10}
     33: {2,5}         95: {3,8}          150: {1,2,3,3}
     35: {3,4}         99: {2,2,5}        153: {2,2,7}
     45: {2,2,3}      102: {1,2,7}        154: {1,4,5}
     51: {2,7}        105: {2,3,4}        155: {3,11}
     55: {3,5}        110: {1,3,5}        161: {4,9}
     60: {1,1,2,3}    119: {4,7}          165: {2,3,5}
     66: {1,2,5}      120: {1,1,1,2,3}    170: {1,3,7}
     69: {2,9}        123: {2,13}         175: {3,3,4}
     70: {1,3,4}      132: {1,1,2,5}      177: {2,17}
     75: {2,3,3}      135: {2,2,2,3}      180: {1,1,2,2,3}
     77: {4,5}        138: {1,2,9}        182: {1,4,6}
     85: {3,7}        140: {1,1,3,4}      186: {1,2,11}
For example, the prime indices of 90 are {1,2,2,3}, and, because 1 divides all the other parts, 90 is in the sequence, even though 3 is not divisible by all the other parts.
		

Crossrefs

The partitions without these Heinz numbers are counted by A130714.
The first condition alone gives A342193.
The second condition alone gives A343337.
The "and" instead of "or" version is A343338.
The partitions with these Heinz numbers are counted by A343346.
A000005 counts divisors.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A018818 counts partitions into divisors (strict: A033630).
A056239 adds up prime indices, row sums of A112798.
A067824 counts strict chains of divisors starting with n.
A253249 counts strict chains of divisors.
A339564 counts factorizations with a selected factor.

Programs

  • Mathematica
    Select[Range[100],#==1||With[{p=PrimePi/@First/@FactorInteger[#]},!And@@IntegerQ/@(Max@@p/p)||!And@@IntegerQ/@(p/Min@@p)]&]

Formula

Equals the union of A342193 and A343337.

A065235 Odd numbers which can be written in precisely one way as sum of a subset of their proper divisors.

Original entry on oeis.org

8925, 32445, 351351, 442365, 159427275, 159587925, 159677175, 159784275, 159837825, 159855675, 159944925, 159962775, 160016325, 160105575, 160266225, 160284075, 160391175, 160444725, 160480425, 160533975, 160551825, 160766025, 161015925, 161033775, 161069475
Offset: 1

Views

Author

Jud McCranie, Oct 23 2001

Keywords

Comments

From Antti Karttunen, Nov 28 2024: (Start)
Characteristic function of this sequence is c(n) = A000035(n)*A378448(n).
The only non-multiples of 25 among the first 10000 terms are a(2)..(4): 32445 = 3^2 * 5 * 7 * 103, 351351 = 3^3 * 7 * 11 * 13^2 and 442365 = 3 * 5 * 7 * 11 * 383, while the other 9997 terms are all of the form 25 * some squarefree number. No terms of A228058 occur among the initial 10000 terms. Compare also to A348743.
(End)

Examples

			See A064771 for an example when the number is even.
		

Crossrefs

Odd terms in A064771 (a unique subset of proper divisors sums to the number).

Formula

{k such that k is odd and A065205(k) = 1}. - Antti Karttunen, Nov 28 2024

Extensions

Definition clarified by M. F. Hasler, Apr 08 2008
More terms from Giovanni Resta, Oct 04 2019
Previous Showing 31-40 of 83 results. Next