cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 83 results. Next

A156859 The main column of a version of the square spiral.

Original entry on oeis.org

0, 3, 7, 14, 22, 33, 45, 60, 76, 95, 115, 138, 162, 189, 217, 248, 280, 315, 351, 390, 430, 473, 517, 564, 612, 663, 715, 770, 826, 885, 945, 1008, 1072, 1139, 1207, 1278, 1350, 1425, 1501, 1580, 1660, 1743, 1827, 1914, 2002, 2093, 2185, 2280, 2376, 2475, 2575
Offset: 0

Views

Author

Emilio Apricena (emilioapricena(AT)yahoo.it), Feb 17 2009

Keywords

Comments

This spiral is sometimes called an Ulam spiral, but square spiral is a better name. - N. J. A. Sloane, Jul 27 2018
It is easy to see that the only two primes in the sequence are 3, 7. Therefore the primes of the version of Ulam spiral are divided into four parts (see also A035608): northeast (NE), northwest (NW), southwest (SW), and southeast (SE).
Number of pairs (x,y) having x and y of opposite parity with x in {0,...,n} and y in {0,...,2n}. - Clark Kimberling, Jul 02 2012
Partial Sums of A014601(n). - Wesley Ivan Hurt, Oct 11 2013

Crossrefs

Cf. A000290, A000384, A004526, A014601 (first differences), A115258.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

Formula

a(n) = n^2 + n + floor((n+1)/2) = A002378(n) + A004526(n+1) = A002620(n+1) + 3*A002620(n).
From R. J. Mathar, Feb 20 2009: (Start)
G.f.: x*(3+x)/((1+x)*(1-x)^3).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). (End)
a(n-1) = floor(n/(e^(1/n)-1)). - Richard R. Forberg, Jun 19 2013
a(n) = A000290(n+1) + A004526(-n-1). - Wesley Ivan Hurt, Jul 15 2013
a(n) + a(n+1) = A014105(n+1). - R. J. Mathar, Jul 15 2013
a(n) = floor(A000384(n+1)/2). - Bruno Berselli, Nov 11 2013
E.g.f.: (x*(5 + 2*x)*cosh(x) + (1 + 5*x + 2*x^2)*sinh(x))/2. - Stefano Spezia, Apr 24 2024
Sum_{n>=1} 1/a(n) = 4/9 + 2*log(2) - Pi/3. - Amiram Eldar, Apr 26 2024

Extensions

More terms added by Wesley Ivan Hurt, Oct 11 2013

A317186 One of many square spiral sequences: a(n) = n^2 + n - floor((n-1)/2).

Original entry on oeis.org

1, 2, 6, 11, 19, 28, 40, 53, 69, 86, 106, 127, 151, 176, 204, 233, 265, 298, 334, 371, 411, 452, 496, 541, 589, 638, 690, 743, 799, 856, 916, 977, 1041, 1106, 1174, 1243, 1315, 1388, 1464, 1541, 1621, 1702, 1786, 1871, 1959, 2048, 2140, 2233, 2329, 2426
Offset: 0

Views

Author

N. J. A. Sloane, Jul 27 2018

Keywords

Comments

Draw a square spiral on a piece of graph paper, and label the cells starting at the center with the positive (resp. nonnegative) numbers. This produces two versions of the labeled square spiral, shown in the Example section below.
The spiral may proceed clockwise or counterclockwise, and the first arm of the spiral may be along any of the four axes, so there are eight versions of each spiral. However, this has no effect on the resulting sequences, and it is enough to consider just two versions of the square spiral (starting at 1 or starting at 0).
The present sequence is obtained by reading alternate entries on the X-axis (say) of the square spiral started at 1.
The cross-references section lists many sequences that can be read directly off the two spirals. Many other sequences can be obtained from them by using them to extract subsequences from other important sequences. For example, the subsequence of primes indexed by the present sequence gives A317187.
a(n) is also the number of free polyominoes with n + 4 cells whose difference between length and width is n. In this comment the length is the longer of the two dimensions and the width is the shorter of the two dimensions (see the examples of polyominoes). Hence this is also the diagonal 4 of A379625. - Omar E. Pol, Jan 24 2025
From John Mason, Feb 19 2025: (Start)
The sequence enumerates polyominoes of width 2 having precisely 2 horizontal bars. By classifying such polyominoes according to the following templates, it is possible to define a formula that reduces to the one below:
.
OO O O
O OO OO
O O O
O O OO
OO OO O
.
(End)

Examples

			The square spiral when started with 1 begins:
.
  100--99--98--97--96--95--94--93--92--91
                                        |
   65--64--63--62--61--60--59--58--57  90
    |                               |   |
   66  37--36--35--34--33--32--31  56  89
    |   |                       |   |   |
   67  38  17--16--15--14--13  30  55  88
    |   |   |               |   |   |   |
   68  39  18   5---4---3  12  29  54  87
    |   |   |   |       |   |   |   |   |
   69  40  19   6   1---2  11  28  53  86
    |   |   |   |           |   |   |   |
   70  41  20   7---8---9--10  27  52  85
    |   |   |                   |   |   |
   71  42  21--22--23--24--25--26  51  84
    |   |                           |   |
   72  43--44--45--46--47--48--49--50  83
    |                                   |
   73--74--75--76--77--78--79--80--81--82
.
For the square spiral when started with 0, subtract 1 from each entry. In the following diagram this spiral has been reflected and rotated, but of course that makes no difference to the sequences:
.
   99  64--65--66--67--68--69--70--71--72
    |   |                               |
   98  63  36--37--38--39--40--41--42  73
    |   |   |                       |   |
   97  62  35  16--17--18--19--20  43  74
    |   |   |   |               |   |   |
   96  61  34  15   4---5---6  21  44  75
    |   |   |   |   |       |   |   |   |
   95  60  33  14   3   0   7  22  45  76
    |   |   |   |   |   |   |   |   |   |
   94  59  32  13   2---1   8  23  46  77
    |   |   |   |           |   |   |   |
   93  58  31  12--11--10---9  24  47  78
    |   |   |                   |   |   |
   92  57  30--29--28--27--26--25  48  79
    |   |                           |   |
   91  56--55--54--53--52--51--50--49  80
    |                                   |
   90--89--88--87--86--85--84--83--82--81
.
From _Omar E. Pol_, Jan 24 2025: (Start)
For n = 0 there is only one free polyomino with 0 + 4 = 4 cells whose difference between length and width is 0 as shown below, so a(0) = 1.
   _ _
  |_|_|
  |_|_|
.
For n = 1 there are two free polyominoes with 1 + 4 = 5 cells whose difference between length and width is 1 as shown below, so a(1) = 2.
   _ _     _ _
  |_|_|   |_|_|
  |_|_|   |_|_
  |_|     |_|_|
.
(End)
		

Crossrefs

Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.
Filling in these two squares spirals with greedy algorithm: A274640, A274641.
Cf. also A317187.

Programs

  • Mathematica
    a[n_] := n^2 + n - Floor[(n - 1)/2]; Array[a, 50, 0] (* Robert G. Wilson v, Aug 01 2018 *)
    LinearRecurrence[{2, 0, -2 , 1},{1, 2, 6, 11},50] (* or *)
    CoefficientList[Series[(- x^3 - 2 * x^2 - 1) / ((x - 1)^3 * (x + 1)), {x, 0, 50}], x] (* Stefano Spezia, Sep 02 2018 *)

Formula

From Daniel Forgues, Aug 01 2018: (Start)
a(n) = (1/4) * (4 * n^2 + 2 * n + (-1)^n + 3), n >= 0.
a(0) = 1; a(n) = - a(n-1) + 2 * n^2 - n + 2, n >= 1.
a(0) = 1; a(1) = 2; a(2) = 6; a(3) = 11; a(n) = 2 * a(n-1) - 2 * a(n-3) + a(n-4), n >= 4.
G.f.: (- x^3 - 2 * x^2 - 1) / ((x - 1)^3 * (x + 1)). (End)
E.g.f.: ((2 + 3*x + 2*x^2)*cosh(x) + (1 + 3*x + 2*x^2)*sinh(x))/2. - Stefano Spezia, Apr 24 2024
a(n)+a(n+1)=A033816(n). - R. J. Mathar, Mar 21 2025
a(n)-a(n-1) = A042948(n), n>=1. - R. J. Mathar, Mar 21 2025

A027468 9 times the triangular numbers A000217.

Original entry on oeis.org

0, 9, 27, 54, 90, 135, 189, 252, 324, 405, 495, 594, 702, 819, 945, 1080, 1224, 1377, 1539, 1710, 1890, 2079, 2277, 2484, 2700, 2925, 3159, 3402, 3654, 3915, 4185, 4464, 4752, 5049, 5355, 5670, 5994, 6327, 6669, 7020, 7380, 7749, 8127, 8514, 8910, 9315
Offset: 0

Views

Author

Keywords

Comments

Staggered diagonal of triangular spiral in A051682, between (0,1,11) spoke and (0,8,25) spoke. - Paul Barry, Mar 15 2003
Number of permutations of n distinct letters (ABCD...) each of which appears thrice with n-2 fixed points. - Zerinvary Lajos, Oct 15 2006
Number of n permutations (n>=2) of 4 objects u, v, z, x with repetition allowed, containing n-2=0 u's. Example: if n=2 then n-2 =zero (0) u, a(1)=9 because we have vv, zz, xx, vx, xv, zx, xz, vz, zv. A027465 formatted as a triangular array: diagonal: 9, 27, 54, 90, 135, 189, 252, 324, ... . - Zerinvary Lajos, Aug 06 2008
a(n) is also the least weight of self-conjugate partitions having n different parts such that each part is a multiple of 3. - Augustine O. Munagi, Dec 18 2008
Also sequence found by reading the line from 0, in the direction 0, 9, ..., and the same line from 0, in the direction 0, 27, ..., in the square spiral whose vertices are the generalized hendecagonal numbers A195160. Axis perpendicular to A195147 in the same spiral. - Omar E. Pol, Sep 18 2011
Sum of the numbers from 4*n to 5*n. - Wesley Ivan Hurt, Nov 01 2014

Examples

			The first such self-conjugate partitions, corresponding to a(n)=1,2,3,4 are 3+3+3, 6+6+6+3+3+3, 9+9+9+6+6+6+3+3+3, 12+12+12+9+9+9+6+6+6+3+3+3. - _Augustine O. Munagi_, Dec 18 2008
		

Crossrefs

Programs

  • Magma
    [9*n*(n+1)/2: n in [0..50]]; // Vincenzo Librandi, Dec 29 2012
    
  • Maple
    [seq(9*binomial(n+1,2), n=0..50)]; # Zerinvary Lajos, Nov 24 2006
  • Mathematica
    Table[(9/2)*n*(n+1), {n,0,50}] (* G. C. Greubel, Aug 22 2017 *)
  • PARI
    a(n)=9*n*(n+1)/2
    
  • Sage
    [9*binomial(n+1, 2) for n in (0..50)] # G. C. Greubel, May 20 2021

Formula

Numerators of sequence a[n, n-2] in (a[i, j])^2 where a[i, j] = binomial(i-1, j-1)/2^(i-1) if j<=i, 0 if j>i.
a(n) = (9/2)*n*(n+1).
a(n) = 9*C(n, 1) + 9*C(n, 2) (binomial transform of (0, 9, 9, 0, 0, ...)). - Paul Barry, Mar 15 2003
G.f.: 9*x/(1-x)^3.
a(-1-n) = a(n).
a(n) = 9*C(n+1,2), n>=0. - Zerinvary Lajos, Aug 06 2008
a(n) = a(n-1) + 9*n (with a(0)=0). - Vincenzo Librandi, Nov 19 2010
a(n) = A060544(n+1) - 1. - Omar E. Pol, Oct 03 2011
a(n) = A218470(9*n+8). - Philippe Deléham, Mar 27 2013
E.g.f.: (9/2)*x*(x+2)*exp(x). - G. C. Greubel, Aug 22 2017
a(n) = A060544(n+1) - 1. See Centroid Triangles illustration. - Leo Tavares, Dec 27 2021
From Amiram Eldar, Feb 15 2022: (Start)
Sum_{n>=1} 1/a(n) = 2/9.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/9 - 2/9. (End)
From Amiram Eldar, Feb 21 2023: (Start)
Product_{n>=1} (1 - 1/a(n)) = -(9/(2*Pi))*cos(sqrt(17)*Pi/6).
Product_{n>=1} (1 + 1/a(n)) = 9*sqrt(3)/(4*Pi). (End)

Extensions

More terms from Patrick De Geest, Oct 15 1999

A267682 a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n > 3, with initial terms 1, 1, 4, 8.

Original entry on oeis.org

1, 1, 4, 8, 15, 23, 34, 46, 61, 77, 96, 116, 139, 163, 190, 218, 249, 281, 316, 352, 391, 431, 474, 518, 565, 613, 664, 716, 771, 827, 886, 946, 1009, 1073, 1140, 1208, 1279, 1351, 1426, 1502, 1581, 1661, 1744, 1828, 1915, 2003, 2094, 2186, 2281, 2377, 2476
Offset: 0

Views

Author

Robert Price, Jan 19 2016

Keywords

Comments

Also, total number of ON (black) cells after n iterations of the "Rule 201" elementary cellular automaton starting with a single ON (black) cell.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Cf. A267679.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

  • Mathematica
    rule=201; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) nbc=Table[Total[catri[[k]]],{k,1,rows}]; (* Number of Black cells in stage n *) Table[Total[Take[nbc,k]],{k,1,rows}] (* Number of Black cells through stage n *)
    LinearRecurrence[{2, 0, -2, 1}, {1, 1, 4, 8}, 60] (* Vincenzo Librandi, Jan 19 2016 *)
  • PARI
    Vec((1-x+2*x^2+2*x^3)/((1-x)^3*(1+x)) + O(x^100)) \\ Colin Barker, Jan 19 2016
    
  • Python
    print([n*(n-1)+n//2+1 for n in range(51)]) # Karl V. Keller, Jr., Jul 14 2021

Formula

G.f.: (1 - x + 2*x^2 + 2*x^3) / ((1-x)^3*(1+x)). - Colin Barker, Jan 19 2016
a(n) = n*(n-1) + floor(n/2) + 1. - Karl V. Keller, Jr., Jul 14 2021
E.g.f.: (exp(x)*(2 + x + 2*x^2) - sinh(x))/2. - Stefano Spezia, Jul 16 2021

Extensions

Edited by N. J. A. Sloane, Jul 25 2018, replacing definition with simpler formula provided by Colin Barker, Jan 19 2016.

A033952 Write 1,2,... in a clockwise spiral on a square lattice, writing each digit at a separate lattice point, starting with 1 at the origin and 2 at x=0, y=-1; sequence gives the numbers on the positive x-axis.

Original entry on oeis.org

1, 8, 6, 2, 3, 6, 6, 0, 3, 1, 8, 0, 2, 7, 1, 3, 9, 3, 4, 3, 9, 6, 0, 6, 8, 9, 6, 1, 2, 4, 2, 1, 5, 9, 4, 1, 0, 7, 7, 1, 7, 8, 0, 2, 6, 3, 4, 2, 7, 1, 8, 2, 0, 2, 2, 3, 5, 6, 6, 3, 2, 4, 1, 4, 1, 5, 6, 4, 2, 9, 2, 5, 5, 6, 8, 5, 0, 6, 4, 6, 7, 9, 0, 7, 6, 6, 7, 7, 7, 6, 4, 8, 0, 9, 1, 9, 5, 5, 9, 1, 0, 4, 0, 0, 9
Offset: 1

Views

Author

Olivier Gorin (gorin(AT)roazhon.inra.fr)

Keywords

Comments

Same as the South spoke of the Champernowne spiral (A244677).

Examples

			The spiral begins
.
  3---1---4---1---5
  |               |
  1   5---6---7   1
  |   |       |   |
  2   4   1   8   6
  |   |   |   |   |
  1   3---2   9   1
  |           |   |
  1---1---0---1   7
.
		

Crossrefs

Programs

  • Mathematica
    almostNatural[n_, b_] := Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]];
    f[n_] := 4n^2 - 5n + 2; Array[ almostNatural[ f@#, 10] &, 105] (* Robert G. Wilson v, Aug 08 2014 *)

Extensions

More terms from Andrew J. Gacek (andrew(AT)dgi.net)
Edited by Charles R Greathouse IV, Nov 01 2009

A069894 Centered square numbers: a(n) = 4*n^2 + 4*n + 2.

Original entry on oeis.org

2, 10, 26, 50, 82, 122, 170, 226, 290, 362, 442, 530, 626, 730, 842, 962, 1090, 1226, 1370, 1522, 1682, 1850, 2026, 2210, 2402, 2602, 2810, 3026, 3250, 3482, 3722, 3970, 4226, 4490, 4762, 5042, 5330, 5626, 5930, 6242, 6562, 6890, 7226, 7570, 7922, 8282
Offset: 0

Views

Author

Glenn B. Cox (igloos_r_us(AT)canada.com), Apr 10 2002

Keywords

Comments

Any number may be substituted for y to yield similar sequences. The number set used determines values given (i.e., integer yields integer). All centered square integers in the set of integers may be found by this formula.
1/2 + 1/10 + 1/26 + ... = (Pi/4)*tanh(Pi/2) [Jolley]. - Gary W. Adamson, Dec 21 2006
For n > 0, a(n-1) is the number of triples (w, x, y) having all terms in {0, ..., n} and min(|w - x|, |x - y|) = 1. - Clark Kimberling, Jun 12 2012
Consider the primitive Pythagorean triples (x(n), y(n), z(n) = y(n) + 1) with n >= 0, and x(n) = 2*n + 1, y(n) = 2*n*(n + 1), z(n) = 2*n*(n + 1) + 1. The sequence, a(n), is 2*z(n). - George F. Johnson, Oct 22 2012
Ulam's spiral (SE corner). See the Wikipedia link. - Kival Ngaokrajang, Jul 25 2014
Conference matrix orders (A000952) of the form n-1 is a perfect square are all in this sequence. All values less than 1000 are conference matrices except for 226 which is still an open question (Balonin & Seberry 2014). - Colin Hall, Nov 21 2018
For n > 0, a(n-1) is the number of maximum number of regions into which the plane can be divided using n convex quadrilaterals. Related: A077588 A077591. - Keyang Li, Jun 17 2022

Examples

			If y = 3, then 81 + 144 = 225; if y = 4, then 12^2 + 16^2 = 20^2; 7^2 + 24^2 = 25^2 = 15^2 + 20^2.
		

References

  • L. B. W. Jolley, "Summation of Series", Dover Publications, 1961, p. 176.

Crossrefs

Programs

Formula

(y*(2*x + 1))^2 + (y*(2*x^2 + 2*x))^2 = (y*(2*x^2 + 2*x + 1))^2, where y = 2. If a^2 + b^2 = c^2, then c^2 = y^2*(4*x^4 + 8*x^3 + 8*x^2 + 4*x + 1). Also 2*A001844.
a(n) = (2*n + 1)^2 + 1. - Vladimir Joseph Stephan Orlovsky, Nov 10 2008 [Corrected by R. J. Mathar, Sep 16 2009]
a(n) = 8*n + a(n-1) for n > 0, a(0)=2. - Vincenzo Librandi, Aug 08 2010
From George F. Johnson, Oct 22 2012: (Start)
G.f.: 2*(1 + x)^2/(1 - x)^3, a(0) = 2, a(1) = 10.
a(n+1) = a(n) + 4 + 4*sqrt(a(n) - 1).
a(n-1) * a(n+1) = (a(n)-4)^2 + 16.
a(n) - 1 = (2*n+1)^2 = A016754(n) for n > 0.
(a(n+1) - a(n-1))/8 = sqrt(a(n) - 1).
a(n+1) = 2*a(n) - a(n-1) + 8 for n > 2, a(0)=2, a(1)=10, a(2)=26.
a(n+1) = 3*a(n) - 3*a(n-1) + a(n-2) for n > 3; a(0)=2, a(1)=10, a(2)=26, a(3)=50.
a(n) = A033996(n) + 2 = A002522(2n + 1).
a(n)^2 = A033996(n)^2 + A016825(n)^2. (End)
a(n) = A001105(n) + A001105(n+1). - Bruno Berselli, Jul 03 2017
E.g.f.: 2*(1 + 4*x + 2*x^2)*exp(x). - G. C. Greubel, Nov 21 2018
a(n) = A261327(4*n+2). - Paul Curtz, Dec 23 2021
a(n) = 2*A001844(n) = 4*A000217(n) + 2*A002061(n+1). - Klaus Purath, Aug 13 2025

Extensions

Edited by Robert G. Wilson v, Apr 11 2002
Offset corrected by Charles R Greathouse IV, Jul 25 2010

A296030 Pairs of coordinates for successive integers in the square spiral (counterclockwise).

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, -1, 1, -1, 0, -1, -1, 0, -1, 1, -1, 2, -1, 2, 0, 2, 1, 2, 2, 1, 2, 0, 2, -1, 2, -2, 2, -2, 1, -2, 0, -2, -1, -2, -2, -1, -2, 0, -2, 1, -2, 2, -2, 3, -2, 3, -1, 3, 0, 3, 1, 3, 2, 3, 3, 2, 3, 1, 3, 0, 3, -1, 3, -2, 3, -3, 3, -3, 2
Offset: 1

Views

Author

Benjamin Mintz, Dec 03 2017

Keywords

Comments

The spiral is also called the Ulam spiral, cf. A174344, A274923 (x and y coordinates). - M. F. Hasler, Oct 20 2019
The n-th positive integer occupies the point whose x- and y-coordinates are represented in the sequence by a(2n-1) and a(2n), respectively. - Robert G. Wilson v, Dec 03 2017
From Robert G. Wilson v, Dec 05 2017: (Start)
The cover of the March 1964 issue of Scientific American (see link) depicts the Ulam Spiral with a heavy black line separating the numbers from their non-sequential neighbors. The pairs of coordinates for the points on this line, assuming it starts at the origin, form this sequence, negated.
The first number which has an abscissa value of k beginning at 0: 1, 2, 10, 26, 50, 82, 122, 170, 226, 290, 362, 442, 530, 626, 730, 842, 962, ...; g.f.: -(x^3 +7x^2 -x +1)/(x-1)^3;
The first number which has an abscissa value of -k beginning at 0: 1, 5, 17, 37, 65, 101, 145, 197, 257, 325, 401, 485, 577, 677, 785, 901, ...; g.f.: -(5x^2 +2x +1)/(x-1)^3;
The first number which has an ordinate value of k beginning at 0: 1, 3, 13, 31, 57, 91, 133, 183, 241, 307, 381, 463, 553, 651, 757, 871, 993, ...; g.f.: -(7x^2+1)/(x-1)^3;
The first number which has an ordinate value of -k beginning at 0: 1, 7, 21, 43, 73, 111, 157, 211, 273, 343, 421, 507, 601, 703, 813, 931, ...; g.f.: -(3x^2+4x+1)/(x-1)^3;
The union of the four sequences above is A033638.
(End)
Sequences A174344, A268038 and A274923 start with the integer 0 at the origin (0,0). One might then prefer offset 0 as to have (a(2n), a(2n+1)) as coordinates of the integer n. - M. F. Hasler, Oct 20 2019
This sequence can be read as an infinite table with 2 columns, where row n gives the x- and y-coordinate of the n-th point on the spiral. If the point at the origin has number 0, then the points with coordinates (n,n), (-n,n), (n,-n) and (n,-n) have numbers given by A002939(n) = 2n(2n-1): (0, 2, 12, 30, ...), A016742(n) = 4n^2: (0, 4, 16, 36, ...), A002943(n) = 2n(2n+1): (0, 6, 20, 42, ...) and A033996(n) = 4n(n+1): (0, 8, 24, 48, ...), respectively. - M. F. Hasler, Nov 02 2019

Examples

			The integer 1 occupies the initial position, so its coordinates are {0,0}; therefore a(1)=0 and a(2)=0.
The integer 2 occupies the position immediately to the right of 1, so its coordinates are {1,0}.
The integer 3 occupies the position immediately above 2, so its coordinates are {1,1}; etc.
		

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 935.

Crossrefs

Cf. Diagonal rays (+-n,+-n): A002939 (2n(2n-1): 0, 2, 12, 30, ...: NE), A016742 (4n^2: 0, 4, 16, 36, ...: NW), A002943 (2n(2n+1): 0, 6, 20, 42, ...: SW) and A033996 (4n(n+1): 0, 8, 24, 48, ...: SE).

Programs

  • Mathematica
    f[n_] := Block[{k = Ceiling[(Sqrt[n] - 1)/2], m, t}, t = 2k +1; m = t^2; t--; If[n >= m - t, {k -(m - n), -k}, m -= t; If[n >= m - t, {-k, -k +(m - n)}, m -= t; If[n >= m - t, {-k +(m - n), k}, {k, k -(m - n - t)}]]]]; Array[f, 40] // Flatten (* Robert G. Wilson v, Dec 04 2017 *)
    f[n_] := Block[{k = Mod[ Floor[ Sqrt[4 If[OddQ@ n, (n + 1)/2 - 2, (n/2 - 2)] + 1]], 4]}, f[n - 2] + If[OddQ@ n, Sin[k*Pi/2], -Cos[k*Pi/2]]]; f[1] = f[2] = 0; Array[f, 90] (* Robert G. Wilson v, Dec 14 2017 *)
    f[n_] := With[{t = Round@ Sqrt@ n}, 1/2*(-1)^t*({1, -1}(Abs[t^2 - n] - t) + t^2 - n - Mod[t, 2])]; Table[f@ n, {n, 0, 95}] // Flatten (* Mikk Heidemaa May 23 2020, after Stephen Wolfram *)
  • PARI
    apply( {coords(n)=my(m=sqrtint(n), k=m\/2); if(m <= n -= 4*k^2, [n-3*k,-k], n >= 0, [-k,k-n], n >= -m, [-k-n,k], [k,3*k+n])}, [0..99]) \\ Use concat(%) to remove brackets '[', ']'. This function gives the coordinates of n on the spiral starting with 0 at (0,0), as shown in Examples for A174344, A274923, ..., so (a(2n-1),a(2n)) = coords(n-1). To start with 1 at (0,0), change n to n-=1 in sqrtint(). The inverse function is pos(x,y) given e.g. in A316328. - M. F. Hasler, Oct 20 2019
  • Python
    from math import ceil, sqrt
    def get_coordinate(n):
        k=ceil((sqrt(n)-1)/2)
        t=2*k+1
        m=t**2
        t=t-1
        if n >= m - t:
            return k - (m-n), -k
        else:
            m -= t
        if n >= m - t:
            return -k, -k+(m-n)
        else:
            m -= t
        if n >= m-t:
            return -k+(m-n), k
        else:
            return k, k-(m-n-t)
    

Formula

a(2*n-1) = A174344(n).
a(2*n) = A274923(n) = -A268038(n).
abs(a(n+2) - a(n)) < 2.
a(2*n-1)+a(2*n) = A180714(n).
f(n) = floor(-n/4)*ceiling(-3*n/4 - 1/4) mod 2 + ceiling(n/8) (gives the pairs of coordinates for integers in the diagonal rays). - Mikk Heidemaa, May 07 2020

A024966 7 times triangular numbers: 7*n*(n+1)/2.

Original entry on oeis.org

0, 7, 21, 42, 70, 105, 147, 196, 252, 315, 385, 462, 546, 637, 735, 840, 952, 1071, 1197, 1330, 1470, 1617, 1771, 1932, 2100, 2275, 2457, 2646, 2842, 3045, 3255, 3472, 3696, 3927, 4165, 4410, 4662, 4921, 5187, 5460, 5740, 6027, 6321, 6622
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org), Dec 11 1999

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 7, ... and the same line from 0, in the direction 1, 21, ..., in the square spiral whose edges have length A195019 and whose vertices are the numbers A195020. This is the main diagonal in the spiral. - Omar E. Pol, Sep 09 2011
Also sequence found by reading the same line mentioned above in the square spiral whose vertices are the generalized enneagonal numbers A118277. Axis perpendicular to A195145 in the same spiral. - Omar E. Pol, Sep 18 2011
Sequence provides all integers m such that 56*m + 49 is a square. - Bruno Berselli, Oct 07 2015
Sum of the numbers from 3*n to 4*n. - Wesley Ivan Hurt, Dec 22 2015

Crossrefs

Programs

  • Magma
    [ (7*n^2 + 7*n)/2 : n in [0..50] ]; // Wesley Ivan Hurt, Jun 09 2014
    
  • Maple
    [seq(7*binomial(n,2), n=1..44)]; # Zerinvary Lajos, Nov 24 2006
  • Mathematica
    7 Table[n (n + 1)/2, {n, 0, 43}] (* or *)
    Table[Sum[i, {i, 3 n, 4 n}], {n, 0, 43}] (* or *)
    Table[SeriesCoefficient[7 x/(1 - x)^3, {x, 0, n}], {n, 0, 43}] (* Michael De Vlieger, Dec 22 2015 *)
    7*Accumulate[Range[0,50]] (* or *) LinearRecurrence[{3,-3,1},{0,7,21},50] (* Harvey P. Dale, Jul 20 2025 *)
  • PARI
    x='x+O('x^100); concat(0, Vec(7*x/(1-x)^3)) \\ Altug Alkan, Dec 23 2015

Formula

a(n) = (7/2)*n*(n+1).
G.f.: 7*x/(1-x)^3.
a(n) = (7*n^2 + 7*n)/2 = 7*A000217(n). - Omar E. Pol, Dec 12 2008
a(n) = a(n-1) + 7*n with n > 0, a(0)=0. - Vincenzo Librandi, Nov 19 2010
a(n) = A069099(n+1) - 1. - Omar E. Pol, Oct 03 2011
a(n) = a(-n-1), a(n+2) = A193053(n+2) + 2*A193053(n+1) + A193053(n). - Bruno Berselli, Oct 21 2011
From Philippe Deléham, Mar 26 2013: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with a(0) = 0, a(1) = 7, a(2) = 21.
a(n) = A174738(7*n+6).
a(n) = A179986(n) + n = A186029(n) + 2*n = A022265(n) + 3*n = A022264(n) + 4*n = A218471(n) + 5*n = A001106(n) + 6*n. (End)
a(n) = Sum_{i=3*n..4*n} i. - Wesley Ivan Hurt, Dec 22 2015
E.g.f.: (7/2)*x*(x+2)*exp(x). - G. C. Greubel, Aug 19 2017
From Amiram Eldar, Feb 25 2022: (Start)
Sum_{n>=1} 1/a(n) = 2/7.
Sum_{n>=1} (-1)^(n+1)/a(n) = (2/7)*(2*log(2) - 1). (End)
From Amiram Eldar, Feb 21 2023: (Start)
Product_{n>=1} (1 - 1/a(n)) = -(7/(2*Pi))*cos(sqrt(15/7)*Pi/2).
Product_{n>=1} (1 + 1/a(n)) = (7/(2*Pi))*cosh(Pi/(2*sqrt(7))). (End)

A033988 Write 0,1,2,... in a clockwise spiral on a square lattice, writing each digit at a separate lattice point, starting with 0 at the origin and 1 at x=0, y=-1; sequence gives the numbers on the positive y-axis.

Original entry on oeis.org

0, 5, 1, 4, 3, 7, 8, 0, 4, 7, 7, 1, 2, 6, 2, 1, 8, 7, 4, 2, 6, 1, 8, 9, 2, 7, 6, 0, 6, 5, 1, 2, 0, 4, 1, 5, 8, 5, 1, 8, 8, 8, 2, 1, 2, 3, 2, 4, 9, 0, 2, 8, 9, 9, 3, 3, 2, 0, 3, 7, 9, 3, 4, 2, 8, 8, 4, 7, 1, 5, 5, 3, 7, 4, 5, 9, 7, 5, 6, 5, 9, 8, 7, 1, 5, 3, 7, 8, 4, 0, 8, 5, 6, 9, 9, 3, 1, 0, 9, 8, 1, 1, 6, 9, 9
Offset: 0

Views

Author

Keywords

Comments

In other words, write 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 ... in a clockwise spiral, starting with the 0 and taking the first step south; the sequence is then picked out from the resulting spiral by starting at the origin and moving north.

Examples

			  1---3---1---4---1
  |               |
  2   4---5---6   5
  |   |       |   |
  1   3   0   7   1
  |   |   |   |   |
  1   2---1   8   6
  |           |   |
  1---0---1---9   1
.
We begin with the 0 and wrap the numbers 1 2 3 4 ... around it.
Then the sequence is obtained by reading vertically upwards, starting from the initial 0.
		

Crossrefs

Sequences based on the same spiral: A033953, A033989, A033990. Spiral without zero: A033952.
Other sequences from spirals: A001107, A002939, A007742, A033951, A033954, A033991, A002943, A033996.
Cf. A033307.

Programs

Formula

a(n) = A033307(4*n^2 + n - 1) for n > 0. - Andrew Woods, May 18 2012

Extensions

More terms from Andrew Gacek (andrew(AT)dgi.net)
Edited by Jon E. Schoenfield, Aug 12 2018

A033989 Write 0,1,2,... in a clockwise spiral on a square lattice, writing each digit at a separate lattice point, starting with 0 at the origin and 1 at x=0, y=-1; sequence gives the numbers on the negative x-axis.

Original entry on oeis.org

0, 3, 1, 1, 3, 2, 7, 9, 1, 1, 6, 9, 4, 7, 9, 1, 2, 1, 2, 1, 6, 7, 4, 3, 6, 1, 2, 9, 5, 1, 1, 0, 9, 3, 1, 3, 6, 6, 1, 8, 6, 9, 2, 5, 0, 2, 2, 4, 6, 6, 2, 5, 6, 0, 3, 8, 9, 5, 3, 3, 6, 9, 4, 0, 5, 4, 4, 9, 8, 0, 5, 0, 4, 5, 5, 3, 3, 1, 6, 8, 5, 8, 6, 5, 1, 4, 7, 4, 9, 1, 8, 5, 1, 9, 9, 8, 6, 6, 9, 1, 1, 6, 4, 8, 1
Offset: 0

Views

Author

Keywords

Examples

			  2---3---2---4---2---5---2
  |                       |
  2   1---3---1---4---1   6
  |   |               |   |
  2   2   4---5---6   5   2
  |   |   |       |   |   |
  1   1   3   0   7   1   7
  |   |   |   |   |   |   |
  2   1   2---1   8   6   2
  |   |           |   |   |
  0   1---0---1---9   1   8
  |                   |   |
  2---9---1---8---1---7   2
We begin with the 0 and wrap the numbers 1 2 3 4 ... around it. Then the sequence is obtained by reading leftwards, starting from the initial 0. - _Andrew Woods_, May 20 2012
		

Crossrefs

Sequences based on the same spiral: A033953, A033988, A033990. Spiral without zero: A033952.
Other sequences from spirals: A001107, A002939, A007742, A033951, A033954, A033991, A002943, A033996, A033988.

Programs

Formula

a(n) = A033307(4*n^2-n-1) for n > 0. - Andrew Woods, May 20 2012

Extensions

More terms from Andrew J. Gacek (andrew(AT)dgi.net)
Edited by Charles R Greathouse IV, Nov 01 2009
Previous Showing 31-40 of 83 results. Next