A193147
Expansion of 1/(1 - x - 2*x^3 - x^5).
Original entry on oeis.org
1, 1, 1, 3, 5, 8, 15, 26, 45, 80, 140, 245, 431, 756, 1326, 2328, 4085, 7168, 12580, 22076, 38740, 67985, 119305, 209365, 367411, 644761, 1131476, 1985603, 3484490, 6114853, 10730820, 18831276, 33046585, 57992715, 101770120, 178594110, 313410816, 549997641
Offset: 0
-
A193147 := proc(n) option remember: if n>=-4 and n<=-1 then 0 elif n=0 then 1 else procname(n-1) + 2*procname(n-3) + procname(n-5) fi: end: seq(A193147(n), n=0..32);
-
Series[1/(1 - x - 2*x^3 - x^5), {x, 0, 32}] // CoefficientList[#, x]& (* Jean-François Alcover, Apr 02 2015 *)
-
a(n):=sum(sum(binomial(j,3*n-5*m+2*j)*binomial(2*m-n,j)*2^(3*n-5*m+2*j), j,0,2*m-n),m,floor((n+1)/2),n); /* Vladimir Kruchinin, Mar 10 2013 */
A023435
Dying rabbits: a(n) = a(n-1) + a(n-2) - a(n-5).
Original entry on oeis.org
0, 1, 1, 2, 3, 5, 7, 11, 16, 24, 35, 52, 76, 112, 164, 241, 353, 518, 759, 1113, 1631, 2391, 3504, 5136, 7527, 11032, 16168, 23696, 34728, 50897, 74593, 109322, 160219, 234813, 344135, 504355, 739168, 1083304, 1587659, 2326828, 3410132, 4997792, 7324620, 10734753
Offset: 0
There are 11 partitions of 6 into parts less than or equal to 3, where the order of 2's is unimportant, a(7)=11. These are (33),(321=231=312),(132=123=213),(3111),(1311),(1131),(1113),(222),(2211=1122=1221=2112=2121=1212),(21111=12111=11211=11121=11112),(111111). - _David Neil McGrath_, Apr 26 2015
There are 11 partitions of 6 into parts less than equal to 4, where the order of 1's is unimportant. These are (42),(24),(411=141=114),(33),(321=312=132),(231=213=123),(3111=1311=1131=1113),(222),(2211=1122=2112=1221=1212=2121),(21111=12111=11211=11121=11112),(111111). - _David Neil McGrath_, May 05 2015
There are a(9)=24 partitions of 8 where the 1's and 2's are frozen []: (8), (7[1]), (6[2]), (53), (35) (44), (6[1][1]), (5,[2][1]), (43[1]), (34[1]), (4[2][2]), (33[2][2]) (5[1][1][1]), (4[2][1][1]), (33[1][1]), (3[2][2][1]), ([2][2][2][2]), (4[1][1][1][1]), (3[2][1][1][1]), ([2][2][2][1][1]), (3[1][1][1][1][1]), ([2][2][1][1][1][1]), ([2][1][1][1][1][1][1]),([1][1][1][1][1][1][1][1]). - _Gregory L. Simay_, Jul 11 2016
- Michael De Vlieger, Table of n, a(n) for n = 0..6024
- John H. E. Cohn, Letter to the editor, Fib. Quart. 2 (1964), 108.
- Verner E. Hoggatt, Jr. and Douglas A. Lind, The dying rabbit problem, Fib. Quart. 7 (1969), 482-487.
- Zoltán Kása, On scattered subword complexity, arXiv:1104.4425 [cs.DM], 2011.
- William J. Keith, Robert Schneider, and Andrew V. Sills, Composition-theoretic series and false theta functions, Integers (2024) Vol. 24A, Art. No. A11. See p. 11.
- Anthony Shannon, François Dubeau, Mine Uysal, and Engin Özkan, A Difference Equation Model of Infectious Disease, Int. J. Bioautomation (2022) Vol. 26, No. 4, 339-352.
- Index entries for linear recurrences with constant coefficients, signature (1,1,0,0,-1).
-
I:=[0,1,1,2,3]; [n le 5 select I[n] else Self(n-1)+Self(n-2)-Self(n-5): n in [1..45]]; // Vincenzo Librandi, Apr 27 2015
-
LinearRecurrence[{1, 1, 0, 0, -1}, {0, 1, 1, 2, 3}, 50] (* Vincenzo Librandi, Apr 27 2015 *)
-
x='x+O('x^99); concat(0, Vec(x/((x-1)*(1+x)*(x^3+x-1)))) \\ Altug Alkan, Apr 09 2018
A158909
Riordan array (1/((1-x)(1-x^2)), x/(1-x)^2). Triangle read by rows, T(n,k) for 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 2, 7, 5, 1, 3, 13, 16, 7, 1, 3, 22, 40, 29, 9, 1, 4, 34, 86, 91, 46, 11, 1, 4, 50, 166, 239, 174, 67, 13, 1, 5, 70, 296, 553, 541, 297, 92, 15, 1, 5, 95, 496, 1163, 1461, 1068, 468, 121, 17, 1, 6, 125, 791, 2269, 3544, 3300, 1912, 695, 154, 19, 1
Offset: 0
From _Wolfdieter Lang_, Oct 22 2019: (Start)
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
----------------------------------------------------
0: 1
1: 1 1
2: 2 3 1
3: 2 7 5 1
4: 3 13 16 7 1
5: 3 22 40 29 9 1
6: 4 34 86 91 46 11 1
7: 4 50 166 239 174 67 13 1
8: 5 70 296 553 541 297 92 15 1
9: 5 95 496 1163 1461 1068 468 121 17 1
10: 6 125 791 2269 3544 3300 1912 695 154 19 1
...
----------------------------------------------------------------------------
Recurrence: T(5, 2) = 16 + 13 + 5 + 7 - 1 = 40, and T(5, 0) = 3 + 2 - 2 = 3. [using _Philippe Deléham_'s Nov 12 2013 recurrence]
Recurrence from A-sequence [1, 2, -1, 2, -5, ...]: T(5, 2) = 1*13 + 2*16 - 1*7 + 2*1 = 40.
Recurrence from Z-sequence [1, 1, -3, 9, -28, ...]: T(5, 0) = 1*3 + 1*13 - 3*16 + 9*7 - 28*1 = 3. (End)
- G. C. Greubel, Rows n = 0..100 of the triangle, flattened
- Paul Barry, Symmetric Third-Order Recurring Sequences, Chebyshev Polynomials, and Riordan Arrays, JIS 12 (2009) 09.8.6.
- Kenneth Edwards and Michael A. Allen, New combinatorial interpretations of the Fibonacci numbers squared, golden rectangle numbers, and Jacobsthal numbers using two types of tile, JIS 24 (2021) 21.3.8.
-
[(&+[(-1)^(j+n-k)*Binomial(2*k+j+1, j): j in [0..n-k]]): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 18 2021
-
T := (n,k) -> binomial(k+n+2, n-k+1)*hypergeom([1, k+n+3], [n-k+2], -1) + (-1)^(n-k)/4^(k+1):
seq(seq(simplify(T(n,k)), k=0..n), n=0..9); # Peter Luschny, Oct 31 2019
-
Table[Sum[(-1)^(j+n-k)*Binomial[j+2*k+1, j], {j,0,n-k}], {n,0,12}, {k,0,n}] // Flatten (* G. C. Greubel, Mar 18 2021 *)
-
flatten([[sum((-1)^(j+n-k)*binomial(j+2*k+1, j) for j in (0..n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 18 2021
A080242
Table of coefficients of polynomials P(n,x) defined by the relation P(n,x) = (1+x)*P(n-1,x) + (-x)^(n+1).
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 2, 1, 3, 4, 2, 1, 1, 4, 7, 6, 3, 1, 5, 11, 13, 9, 3, 1, 1, 6, 16, 24, 22, 12, 4, 1, 7, 22, 40, 46, 34, 16, 4, 1, 1, 8, 29, 62, 86, 80, 50, 20, 5, 1, 9, 37, 91, 148, 166, 130, 70, 25, 5, 1, 1, 10, 46, 128, 239, 314, 296, 200, 95
Offset: 0
Rows are {1}, {1,1,1}, {1,2,2}, {1,3,4,2,1}, {1,4,7,6,3}, ... This is the same as table A035317 with an extra 1 at the end of every second row.
Triangle begins
1;
1, 1, 1;
1, 2, 2;
1, 3, 4, 2, 1;
1, 4, 7, 6, 3;
1, 5, 11, 13, 9, 3, 1;
1, 6, 16, 24, 22, 12, 4;
1, 7, 22, 40, 46, 34, 16, 4, 1;
1, 8, 29, 62, 86, 80, 50, 20, 5;
-
Table[CoefficientList[Series[((1+x)^(n+2) -(-1)^n*x^(n+2))/(1+2*x), {x, 0, n+2}], x], {n, 0, 10}]//Flatten (* G. C. Greubel, Feb 18 2019 *)
A181532
a(0) = 0, a(1) = 1, a(2) = 1, a(3) = 2; a(n) = a(n-1) + a(n-2) + a(n-4).
Original entry on oeis.org
0, 1, 1, 2, 3, 6, 10, 18, 31, 55, 96, 169, 296, 520, 912, 1601, 2809, 4930, 8651, 15182, 26642, 46754, 82047, 143983, 252672, 443409, 778128, 1365520, 2396320, 4205249, 7379697, 12950466, 22726483, 39882198, 69988378, 122821042, 215535903, 378239143, 663763424
Offset: 0
a(7) = 18 = a(6) + a(5) + a(3) = 10 + 6 + 2.
a(7) = 18 = (1 0, 2, 0, 2, 0, 3) dot (10, 6, 3, 2, 1, 1, 1) = (10 + 3 + 2 + 3).
-
LinearRecurrence[{1,1,0,1},{0,1,1,2},40] (* Harvey P. Dale, Jun 20 2015 *)
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 2, 4, 3, 1, 3, 6, 7, 4, 1, 3, 9, 13, 11, 5, 1, 4, 12, 22, 24, 16, 6, 1, 4, 16, 34, 46, 40, 22, 7, 1, 5, 20, 50, 80, 86, 62, 29, 8, 1, 5, 25, 70, 130, 166, 148, 91, 37, 9, 1, 6, 30, 95, 200, 296, 314, 239, 128, 46, 10, 1
Offset: 1
First few rows of the triangle are:
1;
1, 1;
2, 2, 1;
2, 4, 3, 1;
3, 6, 7, 4, 1;
3, 9, 13, 11, 5, 1;
4, 12, 22, 24, 16, 6, 1;
4, 16, 34, 46, 40, 22, 7, 1;
...
From _Peter Bala_, Aug 14 2014: (Start)
Row 4: [2,4,3,1].
k Binary words in B_4 with k 1's Number
- - - - - - - - - - - - - - - - - - - - - - - - - -
1 0001, 0100 2
2 0011, 0101, 1001, 1100 4
3 0111, 1011, 1101 3
4 1111 1
- - - - - - - - - - - - - - - - - - - - - - - - - -
The infinitesimal generator matrix begins
0
1 0
1 2 0
-1 1 3 0
1 -1 1 4 0
-1 1 -1 1 5 0
...
Cf. A132440. (End)
- G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened
- Georg Cantor, Gesammelte Abhandlungen mathematischen und philosophischen Inhalts, Part IV, 4. Mitteilungen zur Lehre vom Transfiniten, VIII Nr. 13, Springer, Berlin, 1932. See p. 434.
-
(* Dot product of two lower triangular matrices *)
dotRow[r_, s_, n_] := Map[Sum[r[n, k] s[k, #], {k, #, n}]&, Range[0, n]]
dotTriangle[r_, s_, n_] := Map[dotRow[r, s, #]&, Range[0, n]]
(* The pure function in the first argument computes A128174 *)
a128176[r_] := dotTriangle[If[EvenQ[#1 + #2], 1, 0]&, Binomial, r]
TableForm[a128176[7]] (* triangle *)
Flatten[a128176[9]] (* data *) (* Hartmut F. W. Hoft, Mar 15 2017 *)
T[n_, n_] := 1; T[n_, 0] := 1 + Floor[n/2]; T[n_, k_] := T[n, k] = T[n - 1, k - 1] + T[n - 1, k]; Table[T[n, k], {n,0,20}, {k, 0, n}] // Flatten (* G. C. Greubel, Sep 30 2017 *)
-
for(n=0, 10, for(k=0,n, print1(sum(i=0,floor(n/2), binomial(n - 2*i,k)), ", "))) \\ G. C. Greubel, Sep 30 2017
A230447
T(n, k) = T(n-1, k) + T(n-1, k-1) + A230135(n, k) with T(n, 0) = A008619(n) and T(n, n) = A080239(n+1), n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 2, 4, 5, 3, 3, 6, 9, 8, 6, 3, 9, 16, 17, 14, 9, 4, 12, 25, 33, 32, 23, 15, 4, 16, 38, 58, 65, 55, 39, 24, 5, 20, 54, 96, 124, 120, 94, 63, 40, 5, 25, 75, 150, 220, 244, 215, 157, 103, 64, 6, 30, 100, 225, 371, 464, 459, 372, 261, 167, 104
Offset: 0
The first few rows of triangle T(n, k) n >= 0 and 0 <= k <= n.
n/k 0 1 2 3 4 5 6 7
------------------------------------------------
0| 1
1| 1, 1
2| 2, 2, 2
3| 2, 4, 5, 3
4| 3, 6, 9, 8, 6
5| 3, 9, 16, 17, 14, 9
6| 4, 12, 25, 33, 32, 23, 15
7| 4, 16, 38, 58, 65, 55, 39, 24
The triangle as a square array Tsq(n, k) = T(n+k, k), n >= 0 and k >= 0.
n/k 0 1 2 3 4 5 6 7
------------------------------------------------
0| 1, 1, 2, 3, 6, 9, 15, 24
1| 1, 2, 5, 8, 14, 23, 39, 63
2| 2, 4, 9, 17, 32, 55, 94, 157
3| 2, 6, 16, 33, 65, 120, 215, 372
4| 3, 9, 25, 58, 124, 244, 459, 831
5| 3, 12, 38, 96, 220, 464, 924, 1755
6| 4, 16, 54, 150, 371, 835, 1759, 3514
7| 4, 20, 75, 225, 596, 1431, 3191, 6705
-
T := proc(n, k): add(A035317(n-i, n-k+i), i=0..floor(k/2)) end: A035317 := proc(n, k): add((-1)^(i+k) * binomial(i+n-k+1, i), i=0..k) end: seq(seq(T(n, k), k=0..n), n=0..10); # End first program.
T := proc(n, k) option remember: if k=0 then return(A008619(n)) elif k=n then return(A080239(n+1)) else A230135(n, k) + procname(n-1, k) + procname(n-1, k-1) fi: end: A008619 := n -> floor(n/2) +1: A080239 := n -> add(combinat[fibonacci](n-4*k), k=0..floor((n-1)/4)): A230135 := proc(n, k): if ((k mod 4 = 2) and (n mod 2 = 1)) or ((k mod 4 = 0) and (n mod 2 = 0)) then return(1) else return(0) fi: end: seq(seq(T(n, k), k=0..n), n=0..10); # End second program.
A092879
Triangle of coefficients of the product of two consecutive Fibonacci polynomials.
Original entry on oeis.org
1, 1, 1, 1, 3, 2, 1, 5, 7, 2, 1, 7, 16, 13, 3, 1, 9, 29, 40, 22, 3, 1, 11, 46, 91, 86, 34, 4, 1, 13, 67, 174, 239, 166, 50, 4, 1, 15, 92, 297, 541, 553, 296, 70, 5, 1, 17, 121, 468, 1068, 1461, 1163, 496, 95, 5, 1, 19, 154, 695, 1912, 3300, 3544, 2269, 791, 125, 6, 1, 21, 191
Offset: 0
Triangle begins;
1;
1,1;
1,3,2;
1,5,7,2;
1,7,16,13,3;
1,9,29,40,22,3;
...
F(3,x) = 1 + 2*x and F(4,x) = 1 + 3*x + x^2 so F(3,x)*F(4,x)=(1 + 3*x + x^2)*(1 + 2*x) = 1 + 5*x + 7*x^2 + 2*x^3 leads to T(3,k) = [1,5,7,2].
-
T:=proc(n,k): add((-1)^(i+k)*binomial(i+2*n-2*k+1,i), i=0..k) end: seq(seq(T(n,k), k=0..n), n=0..10); # Johannes W. Meijer, Jul 20 2011
T:=proc(n,k): coeff(F(n, x)*F(n+1, x), x, k) end: F:=proc(n, x) option remember: if n=0 then 1 elif n=1 then 1 else procname(n-1, x) + x*procname(n-2, x) fi: end: seq(seq(T(n,k), k=0..n), n=0..10); # Johannes W. Meijer, Jul 20 2011
-
c0 = -1; p[x, -1] = 0; p[x, 0] = 1; p[x, 1] = 2 - x + c0; p[x_, n_] :=p[x, n] = (2 + c0 -x)*p[x, n - 1] + (-1 - c0 (2 - x))*p[x, n - 2] + c0*p[x, n - 3]; Table[ExpandAll[p[x, n]], {n, 0, 10}]; a = Table[Reverse[CoefficientList[p[x, n], x]], {n, 0, 10}]; Flatten[a] (* Roger L. Bagula, Apr 09 2008 *)
-
T(n,k)=local(m);if(k<0 || k>n,0,n++; m=contfracpnqn(matrix(2,n,i,j,x)); polcoeff(m[1,1]*m[2,1]/x^n,n-k))
A190525
Number of n-step one-sided prudent walks, avoiding exactly two consecutive west steps (can have three or more west steps).
Original entry on oeis.org
1, 3, 6, 15, 34, 80, 185, 431, 1001, 2328, 5411, 12580, 29244, 67985, 158045, 367411, 854126, 1985603, 4615966, 10730820, 24946129, 57992715, 134816705, 313410816, 728591751, 1693770328, 3937538296, 9153665985, 21279691689, 49469281395
Offset: 0
a(2) = 6 since there are 6 such walks: NN, NW, WN, EE, EN, NE.
-
I:=[1,3,6,15]; [n le 4 select I[n] else 2*Self(n-1) +Self(n-2) -Self(n-3) +Self(n-4): n in [1..40]]; // G. C. Greubel, Apr 17 2021
-
A190525 := proc(n) option remember: if n=0 then 1 elif n=1 then 3 elif n=2 then 6 elif n=3 then 15 else 2*procname(n-1) + procname(n-2) - procname(n-3) + procname(n-4) fi: end: seq(A190525(n), n=0..29); # Johannes W. Meijer, Jul 20 2011
-
LinearRecurrence[{2,1,-1,1}, {1,3,6,15}, 40] (* G. C. Greubel, Apr 17 2021 *)
-
def A190525_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x-x^2+x^3)/(1-2*x-x^2+x^3-x^4) ).list()
A190525_list(40) # G. C. Greubel, Apr 17 2021
A193146
Expansion of 1/(1 - x - x^2 + x^3 - x^4 + x^6).
Original entry on oeis.org
1, 1, 2, 2, 4, 5, 8, 10, 15, 20, 29, 39, 55, 75, 105, 144, 200, 275, 381, 525, 726, 1001, 1383, 1908, 2635, 3636, 5020, 6928, 9564, 13200, 18221, 25149, 34714, 47914, 66136, 91285, 126000, 173914, 240051
Offset: 0
-
a:=[1,1,2,2,4,5];; for n in [7..40] do a[n]:=a[n-1]+a[n-2]-a[n-3]+a[n-4]-a[n-6]; od; a; # G. C. Greubel, Jan 01 2020
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!(1/(1-x-x^2+x^3-x^4+x^6))); // Bruno Berselli, Jul 22 2011
-
A193146 := proc(n) option remember: if n>=-5 and n<=-1 then 0 elif n=0 then 1 else procname(n-1) + procname(n-2) - procname(n-3) + procname(n-4) - procname(n-6) fi: end: seq(A193146(n), n=0..40);
-
CoefficientList[Series[1/(1-x-x^2+x^3-x^4+x^6), {x, 0, 40}], x] (* Michael De Vlieger, Dec 24 2019 *)
LinearRecurrence[{1,1,-1,1,0,-1},{1,1,2,2,4,5},50] (* Harvey P. Dale, Mar 27 2022 *)
-
makelist(coeff(taylor(1/(1-x-x^2+x^3-x^4+x^6), x, 0, n), x, n), n, 0, 40); /* Bruno Berselli, Jul 22 2011 */
-
Vec(1/(1-x-x^2+x^3-x^4+x^6) +O(x^40)) /* show terms */ \\ Bruno Berselli, Jul 22 2011
-
def A193146_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( 1/(1-x-x^2+x^3-x^4+x^6) ).list()
A193146_list(40) # G. C. Greubel, Jan 01 2020
Comments