cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 52 results. Next

A349660 Numbers which are the sum of a prime and the square of the next prime.

Original entry on oeis.org

11, 28, 54, 128, 180, 302, 378, 548, 864, 990, 1400, 1718, 1890, 2252, 2856, 3534, 3780, 4550, 5108, 5400, 6314, 6968, 8004, 9498, 10298, 10710, 11552, 11988, 12878, 16242, 17288, 18900, 19458, 22340, 22950, 24800, 26726, 28052, 30096, 32214, 32940, 36662
Offset: 1

Views

Author

Karl-Heinz Hofmann, Nov 24 2021

Keywords

Examples

			a(2) = 3 + 5^2 = 28; a(3) = 5 + 7^2 = 54.
		

Crossrefs

Programs

  • Mathematica
    nterms=100;Table[Prime[n]+Prime[n+1]^2,{n,nterms}] (* Paolo Xausa, Nov 24 2021 *)
  • PARI
    a(n) = prime(n) + prime(n+1)^2; \\ Michel Marcus, Nov 24 2021
  • Python
    from sympy import sieve;
    for n in range(1,10001): print(sieve[n] + sieve[n+1]**2)
    

Formula

a(n) = prime(n) + prime(n+1)^2.
a(n) = A000040(n) + A001248(n+1).
a(n) = A036690(n+1) - A001223(n).
a(n) = A001043(n) + A036689(n+1). - Michel Marcus, Nov 24 2021

A124827 Order of Galois groups of irreducible Chebyshev polynomials of order n.

Original entry on oeis.org

1, 2, 6, 8, 20, 12, 42, 16, 54, 40, 110, 48, 156, 84, 120, 64, 272, 108, 342, 160, 252
Offset: 1

Views

Author

Artur Jasinski, Nov 09 2006

Keywords

Comments

All groups belonging to solvable Galois groups.
Very similar sequence is A002618 (disagreement occurred only for Chebyshev polynomials orders 8 and 16).
When the order of an irreducible Chebyshev polynomial is a prime number p, the Galois group is the Frobenius group of order p*(p-1) A036689.
In Magma classification the Galois groups are the following: T1_1, T2_1, T3_2, T4_3, T5_3, T6_3, T7_4, T8_8, T9_10, T11_4, T12_28, T13_6, T14_7, T15_11, T16_144, T17_5, T18_45, T19_6, T20_42, T21_15.
Is a(n) the order of Galois group of the polynomial x^n - 2? If so, then a(n) = n*phi(n) for n not divisible by 8, and n*phi(n)/2 otherwise (see the Math Overflow link below). Under this assumption, a(n) is multiplicative with a(p^e) = p^(2*e-1)*(p-1) for p being an odd prime; a(2) = 2, a(4) = 8, and a(2^e) = 2^(2*e-2) for e >= 3. - Jianing Song, Nov 22 2022

Examples

			a(5)=20 because the order of the Galois group of polynomial 16x^5-20x^3+5x-c is 20 (where c is an integer chosen so that the polynomial is irreducible). This transitive group is the Frobenius group F5 of order 20 (also called the metacyclic group M_5) T5_3(20) in Magma classification.
		

Crossrefs

Programs

  • Magma
    Zx:=PolynomialRing(Integers()); f:=16*x^5-20*x^3+5*x-7; G:=GaloisGroup(f:Old); "Order of group",#G; // Juergen Klueners klueners(AT)math.uni-duesseldorf.de

A124900 Largest order of any solvable transitive Galois group for an irreducible polynomial of degree n.

Original entry on oeis.org

1, 2, 6, 24, 20, 72, 42, 1152, 1296, 800, 110, 82944, 156, 3528, 155520, 7962624, 272, 2239488, 342, 159252480, 11757312, 225280, 506, 13759414272, 64000000, 1277952, 13060694016, 192631799808, 812, 48372940800
Offset: 1

Views

Author

Artur Jasinski, Nov 12 2006

Keywords

Comments

These transitive groups are in classification of MAGMA:
a(1)=1T1,a(2)=2T1,a(3)=3T2,a(4)=4T5,a(5)=5T3,a(6)=6T13,
a(7)=7T4,a(8)=8T47,a(9)=9T31,a(10)=10T33,a(11)=11T4,
a(12)=12T294,a(13)=13T6,a(14)=14T45,a(15)=15T87,
a(16)=16T1947,a(17)=17T5,a(18)=18T945,a(19)=19T6,
a(20)=20T1067,a(21)=21T142,a(22)=22T37,a(23)=23T5,
a(24)=24T24921,a(25)=25T179,a(26)=26T79,a(27)=27T2372,
a(28)=28T1773,a(29)=29T6,a(30)=30T5358.
Conjecture: The sequence a(prime(n)), which begins 2, 6, 20, 42, 110, 156, 272, 342, 506, 812, increases without bound. It appears that a(prime(n)) may equal prime(n)(prime(n)-1), which is A036689. - Artur Jasinski, Feb 26 2011

Examples

			a(9)=1296 because solvable Galois group T9_31 (in MAGMA's list) has order 1296
		

Crossrefs

Extensions

a(11)-a(30) from Artur Jasinski, Feb 26 2011

A127921 1/12 of product of three numbers: n-th prime, previous and following number.

Original entry on oeis.org

2, 10, 28, 110, 182, 408, 570, 1012, 2030, 2480, 4218, 5740, 6622, 8648, 12402, 17110, 18910, 25058, 29820, 32412, 41080, 47642, 58740, 76048, 85850, 91052, 102078, 107910, 120232, 170688, 187330, 214268, 223790, 275650, 286900, 322478, 360882, 388108, 431462
Offset: 2

Views

Author

Artur Jasinski, Feb 06 2007

Keywords

Comments

Summation of products of partitions into two parts of prime(n): a(6) = (1*12) + (2*11) + (3*10) + (4*9) + (5*8) + (6*7) = 182. - César Aguilera, Feb 20 2018

Crossrefs

Programs

  • Magma
    [(NthPrime(n) + 1)*NthPrime(n)*(NthPrime(n) - 1)/12: n in [2..50]]; // G. C. Greubel, Apr 30 2018
  • Maple
    a:= n-> (p->p*(p^2-1)/12)(ithprime(n)):
    seq(a(n), n=2..40);  # Alois P. Heinz, Mar 08 2022
  • Mathematica
    Table[(Prime[n] + 1) Prime[n](Prime[n] - 1)/12, {n, 2, 100}]
    ((#-1)#(#+1))/12&/@Prime[Range[2,40]] (* Harvey P. Dale, Mar 08 2022 *)
  • PARI
    a(n,p=prime(n))=binomial(p+1,3)/2 \\ Charles R Greathouse IV, Feb 28 2018
    

Formula

a(n) ~ (n log n)^3/12. - Charles R Greathouse IV, Feb 28 2018

A174869 a(n) is 0 if n is a power of 2, otherwise the smallest k > 0 such that A006530(n+k) < A006530(n).

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 1, 0, 7, 2, 1, 4, 1, 1, 1, 0, 1, 14, 1, 4, 3, 2, 1, 8, 2, 1, 5, 2, 1, 2, 1, 0, 2, 1, 1, 28, 1, 1, 1, 8, 1, 3, 1, 1, 3, 2, 1, 16, 1, 4, 1, 2, 1, 10, 1, 4, 3, 2, 1, 4, 1, 1, 1, 0, 1, 4, 1, 2, 1, 2, 1, 56, 1, 1, 6, 1, 3, 2, 1, 1, 47, 2, 1, 6, 3, 1, 1, 2, 1, 6, 5, 3, 2, 1, 1, 32, 1, 2, 1, 8, 1, 2, 1
Offset: 1

Views

Author

Vladimir Shevelev, Mar 31 2010

Keywords

Comments

a(n)=1 if the index n is an odd prime.

Crossrefs

Programs

  • Maple
    A006530 := proc(n) option remember; if n = 1 then 1; else max(op(numtheory[factorset](n)) ) ; end if; end proc:
    A174869 := proc(n) if n <= 2 then 0; else gpf := A006530(n) ; if gpf = 2 then 0; else for k from 1 do if A006530(n+k) < gpf then return k; end if; end do: end if; end if; end proc:
    seq(A174869(n),n=1..120) ; # R. J. Mathar, Aug 10 2010
  • Mathematica
    Block[{s = Array[FactorInteger[#][[-1, 1]] &, 120]}, Array[If[IntegerQ@ Log2[#], 0, Block[{k = 1, n = s[[#]]}, While[n <= s[[# + k]], k++; If[# + k > Length[s], AppendTo[s, FactorInteger[# + k][[-1, 1]] ]] ]; k]] &, 102, 2]] (* Michael De Vlieger, Apr 06 2021 *)
  • PARI
    A006530(n) = if(n>1, vecmax(factor(n)[, 1]), 1);
    A174869(n) = if(!bitand(n,n-1), 0, my(gpf=A006530(n)); for(k=1,oo,if(A006530(n+k)Antti Karttunen, Apr 06 2021

Extensions

More terms from R. J. Mathar, Aug 10 2010

A306190 a(n) = p^2 - p - 1 where p = prime(n), the n-th prime.

Original entry on oeis.org

1, 5, 19, 41, 109, 155, 271, 341, 505, 811, 929, 1331, 1639, 1805, 2161, 2755, 3421, 3659, 4421, 4969, 5255, 6161, 6805, 7831, 9311, 10099, 10505, 11341, 11771, 12655, 16001, 17029, 18631, 19181, 22051, 22649, 24491, 26405, 27721, 29755, 31861, 32579, 36289
Offset: 1

Views

Author

Kritsada Moomuang, Jan 28 2019

Keywords

Comments

Terms are divisible by 5 iff p is of the form 10*m + 3 (A030431).

Examples

			a(3) = 19 because 5^2 - 5 - 1 = 19.
		

Crossrefs

Supersequence of A091568.
Subsequence of A028387 or A165900.
Second column of A378979.
A039914 is an essentially identical sequence.

Programs

  • Maple
    map(p -> p^2-p-1, [seq(ithprime(i),i=1..100)]); # Robert Israel, Mar 11 2019
  • Mathematica
    Table[Prime[n]^2-Prime[n]-1, {n, 1, 100}] (* Jinyuan Wang, Feb 02 2019 *)
  • PARI
    a(n) = {p=prime(n);p^2-p-1;} \\ Jinyuan Wang, Feb 02 2019

Formula

a(n) = A036689(n) - 1.
a(n) = A036690(n) - A072055(n).
a(n) = A060800(n) - A089241(n).
From Amiram Eldar, Nov 07 2022: (Start)
Product_{n>=1} (1 + 1/a(n)) = A065488.
Product_{n>=2} (1 - 1/a(n)) = A065479. (End)
a(n) = A033879(A001248(n)). [Deficiency of squares of primes] - Antti Karttunen, Dec 13 2024

A366362 Triangle read by rows: T(n,k) = Sum_{y=1..n} Sum_{x=1..n} [GCD(f(x,y), n) = k], where f(x,y) = x^3 - x^2 - y^2 - y.

Original entry on oeis.org

1, 0, 4, 5, 0, 4, 0, 8, 0, 8, 21, 0, 0, 0, 4, 0, 20, 0, 0, 0, 16, 40, 0, 0, 0, 0, 0, 9, 0, 32, 0, 16, 0, 0, 0, 16, 45, 0, 24, 0, 0, 0, 0, 0, 12, 0, 84, 0, 0, 0, 0, 0, 0, 0, 16, 111, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 40, 0, 40, 0, 32, 0, 0, 0, 0, 0, 32
Offset: 1

Views

Author

Mats Granvik, Oct 08 2023

Keywords

Comments

Row n appears to have sum n^2. T(prime(m),1) = A366346(m). The number of nonzero terms in row n appears to be A320111(n).

Examples

			{
{1}, = 1^2
{0, 4}, = 2^2
{5, 0, 4}, = 3^2
{0, 8, 0, 8}, = 4^2
{21, 0, 0, 0, 4}, = 5^2
{0, 20, 0, 0, 0, 16}, = 6^2
{40, 0, 0, 0, 0, 0, 9}, = 7^2
{0, 32, 0, 16, 0, 0, 0, 16}, = 8^2
{45, 0, 24, 0, 0, 0, 0, 0, 12}, = 9^2
{0, 84, 0, 0, 0, 0, 0, 0, 0, 16}, = 10^2
{111, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10}, = 11^2
{0, 40, 0, 40, 0, 32, 0, 0, 0, 0, 0, 32} = 12^2
}
		

Crossrefs

Programs

  • Mathematica
    f = x^3 - x^2 - y^2 - y; nn = 12; Flatten[Table[Table[Sum[Sum[If[GCD[f, n] == k, 1, 0], {x, 1, n}], {y, 1, n}], {k, 1, n}], {n, 1, nn}]]

Formula

T(n,k) = Sum_{y=1..n} Sum_{x=1..n} [GCD(f(x,y), n) = k], where f(x,y) = x^3 - x^2 - y^2 - y.
Conjecture: T(n,n) = A060457(n).

A053198 Totients of consecutive pure powers of primes.

Original entry on oeis.org

2, 4, 6, 8, 20, 18, 16, 42, 32, 54, 110, 100, 64, 156, 162, 128, 272, 294, 342, 256, 506, 500, 486, 812, 930, 512, 1210, 1332, 1640, 1806, 1024, 1458, 2028, 2162, 2058, 2756, 2500, 3422, 3660, 2048, 4422, 4624, 4970, 5256, 6162, 4374, 6498, 6806, 7832, 4096
Offset: 1

Views

Author

Labos Elemer, Mar 03 2000

Keywords

Comments

Totients of prime powers are prime powers only for powers of 2.

Examples

			The 10th pure power of prime (but not a prime) is 81, so a(10) = EulerPhi(81) = 54.
		

Crossrefs

Programs

  • Mathematica
    EulerPhi[Select[Range[2^13], CompositeQ[#] && PrimePowerQ[#] &]] (* Amiram Eldar, Dec 21 2020 *)

Formula

a(n) = A000010(A025475(n+1)).
Numbers of the form phi(p^k) = (p-1)*p^(k-1), where p is prime and k > 1.
Sum_{n>=1} 1/a(n) = Sum_{p prime} 1/(p-1)^2 = A086242 = 1.3750649947... - Amiram Eldar, Dec 21 2020

A053211 Cototients of consecutive pure powers of primes.

Original entry on oeis.org

2, 4, 3, 8, 5, 9, 16, 7, 32, 27, 11, 25, 64, 13, 81, 128, 17, 49, 19, 256, 23, 125, 243, 29, 31, 512, 121, 37, 41, 43, 1024, 729, 169, 47, 343, 53, 625, 59, 61, 2048, 67, 289, 71, 73, 79, 2187, 361, 83, 89, 4096, 97, 101, 103, 107, 109, 529, 113, 1331, 3125, 127
Offset: 1

Views

Author

Labos Elemer, Mar 03 2000

Keywords

Comments

Cototients of prime powers do not remain always prime powers, but are primes if their exponent is 2.

Examples

			The 10th pure power of prime (but not a prime) is 81, so a(10) = 81 - EulerPhi(81) = 81 - 54 = 27. For n=p^2, a(n)=p.
		

Crossrefs

Programs

  • Mathematica
    Map[# - EulerPhi@ # &, Select[Range[16200], And[! PrimeQ@ #, PrimePowerQ@ #] &]] (* Michael De Vlieger, Jun 11 2018 *)
    With[{nn = 2^14}, Map[Times @@ Map[#1^(#2 - 1) & @@ FactorInteger[#][[1]]] &, Select[Union@ Flatten@ Table[a^2*b^3, {b, nn^(1/3)}, {a, Sqrt[nn/b^3]}], PrimePowerQ] ] ] (* Michael De Vlieger, Mar 11 2023 *)

Formula

a(n) = A051953(A025475(n+1)) = cototient(p^k) = p^(k-1).

A138459 a(n) = ((n-th prime)^6-(n-th prime)^4)/12.

Original entry on oeis.org

4, 54, 1250, 9604, 146410, 399854, 2004504, 3909630, 12313004, 49509670, 73881680, 213654354, 395606540, 526495354, 897861304, 1846372554, 3514034690, 4292210710, 7536519254, 10672906020, 12608819004, 20254042120, 27241076254
Offset: 1

Views

Author

Artur Jasinski, Mar 22 2008

Keywords

Comments

Differences (p^k-p^m)/q such that k > m:
p^2-p is given in A036689
(p^2-p)/2 is given in A008837
p^3-p is given in A127917
(p^3-p)/2 is given in A127918
(p^3-p)/3 is given in A127919
(p^3-p)/6 is given in A127920
p^3-p^2 is given in A135177
(p^3-p^2)/2 is given in A138416
p^4-p is given in A138401
(p^4-p)/2 is given in A138417
p^4-p^2 is given in A138402
(p^4-p^2)/2 is given in A138418
(p^4-p^2)/3 is given in A138419
(p^4-p^2)/4 is given in A138420
(p^4-p^2)/6 is given in A138421
(p^4-p^2)/12 is given in A138422
p^4-p^3 is given in A138403
(p^4-p^3)/2 is given in A138423
p^5-p is given in A138404
(p^5-p)/2 is given in A138424
(p^5-p)/3 is given in A138425
(p^5-p)/5 is given in A138426
(p^5-p)/6 is given in A138427
(p^5-p)/10 is given in A138428
(p^5-p)/15 is given in A138429
(p^5-p)/30 is given in A138430
p^5-p^2 is given in A138405
(p^5-p^2)/2 is given in A138431
p^5-p^3 is given in A138406
(p^5-p^3)/2 is given in A138432
(p^5-p^3)/3 is given in A138433
(p^5-p^3)/4 is given in A138434
(p^5-p^3)/6 is given in A138435
(p^5-p^3)/8 is given in A138436
(p^5-p^3)/12 is given in A138437
(p^5-p^3)/24 is given in A138438
p^5-p^4 is given in A138407
(p^5-p^4)/2 is given in A138439
p^6-p is given in A138408
(p^6-p)/2 is given in A138440
p^6-p^2 is given in A138409
(p^6-p^2)/2 is given in A138441
(p^6-p^2)/3 is given in A138442
(p^6-p^2)/4 is given in A138443
(p^6-p^2)/5 is given in A138444
(p^6-p^2)/6 is given in A138445
(p^6-p^2)/10 is given in A138446
(p^6-p^2)/12 is given in A138447
(p^6-p^2)/15 is given in A138448
(p^6-p^2)/20 is given in A122220
(p^6-p^2)/30 is given in A138450
(p^6-p^2)/60 is given in A138451
p^6-p^3 is given in A138410
(p^6-p^3)/2 is given in A138452
p^6-p^4 is given in A138411
(p^6-p^4)/2 is given in A138453
(p^6-p^4)/3 is given in A138454
(p^6-p^4)/4 is given in A138455
(p^6-p^4)/6 is given in A138456
(p^6-p^4)/8 is given in A138457
(p^6-p^4)/12 is given in A138458
(p^6-p^4)/24 is given in A138459
p^6-p^5 is given in A138412
(p^6-p^5)/2 is given in A138460

Programs

  • Mathematica
    a = {}; Do[p = Prime[n]; AppendTo[a, (p^6 - p^4)/12], {n, 1, 24}]; a
  • PARI
    forprime(p=2,1e3,print1((p^6-p^4)/12", ")) \\ Charles R Greathouse IV, Jul 15 2011
Previous Showing 31-40 of 52 results. Next