cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 67 results. Next

A263272 Self-inverse permutation of nonnegative integers: a(n) = A263273(2*n) / 2.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 11, 8, 9, 10, 7, 12, 13, 14, 15, 32, 23, 18, 29, 20, 33, 38, 17, 24, 35, 26, 27, 28, 19, 30, 37, 16, 21, 34, 25, 36, 31, 22, 39, 40, 41, 42, 95, 68, 45, 86, 59, 96, 113, 50, 69, 104, 77, 54, 83, 56, 87, 110, 47, 60, 101, 74, 99, 92, 65, 114, 119, 44, 51, 98, 71, 72, 89, 62, 105, 116, 53, 78, 107, 80, 81
Offset: 0

Views

Author

Antti Karttunen, Dec 05 2015

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{g, h}, g[x_] := x/3^IntegerExponent[x, 3]; h[x_] := x/g@ x; If[n == 0, 0, FromDigits[Reverse@ IntegerDigits[#, 3], 3] &@ g[n] h[n]]]; Table[f[2 n]/2, {n, 0, 81}] (* Michael De Vlieger, Jan 04 2016,after Jean-François Alcover at A263273 *)
  • Python
    from sympy import factorint
    from sympy.ntheory.factor_ import digits
    from operator import mul
    def a030102(n): return 0 if n==0 else int(''.join(map(str, digits(n, 3)[1:][::-1])), 3)
    def a038502(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==3 else i**f[i] for i in f])
    def a038500(n): return n/a038502(n)
    def a263273(n): return 0 if n==0 else a030102(a038502(n))*a038500(n)
    def a(n): return a263273(2*n)/2 # Indranil Ghosh, May 23 2017
  • Scheme
    (define (A263272 n) (/ (A263273 (+ n n)) 2))
    

Formula

a(n) = A263273(2*n) / 2 = A264984(n) / 2.
As a composition of related permutations:
a(n) = A264974(A264975(n)) = A264976(A264974(n)).
Other identities. For all n >= 0:
a(3*n) = 3*a(n).
A000035(a(n)) = A000035(n). [This permutation preserves the parity of n.]
A264974(n) = a(2n)/2. [Thus the restriction onto even numbers induces yet another permutation.]

A060904 Largest power of 5 that divides n.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 25, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 25, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 25, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1, 5, 1, 1, 1, 1
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), May 06 2001

Keywords

Comments

Also the largest power of 5 that divides the n-th Fibonacci number A000045(n).
Multiplicative with a(p^e) = 5^e if p = 5, else a(p^e) = 1. - Mitch Harris, Apr 19 2005
Also 5-adic value of 1/n, n >= 1. See the Mahler reference, definition on p. 7. This is a non-archimedean valuation. See Mahler, p. 10. Sometimes also called 5-adic absolute value. - Wolfdieter Lang, Jun 30 2014

Examples

			a(10) = 5 because 10 = 5 * 2.
		

References

  • Kurt Mahler, p-adic numbers and their functions, second ed., Cambridge University Press, 1981.

Crossrefs

Programs

Formula

If n is not divisible by 5, then a(n) = 1. If n = 5^k * m where m is not divisible by 5, then a(n) = 5^k.
Dirichlet g.f.: zeta(s)*(5^s-1)/(5^s-5). - R. J. Mathar, Jul 12 2012
a(n) = 5^A112765(n). - Tom Edgar, Mar 22 2014
From Peter Bala, Feb 21 2019: (Start)
a(n) = gcd(n,5^n).
a(n) = n/A132739(n).
O.g.f.: x/(1 - x) + 4*Sum_{n >= 1} 5^(n-1)*x^(5^n)/ (1 - x^(5^n)). (End).
a(n) = (1/5)*(sigma(5*n) - sigma(n))/(sigma(5*n) - 5*sigma(n)), where sigma(n) = A000203(n). - Peter Bala, Jun 10 2022
Sum_{k=1..n} a(k) ~ (4/(5*log(5)))*n*log(n) + (3/5 + 4*(gamma-1)/(5*log(5)))*n, where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 15 2022

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 07 2001
Edited by Joerg Arndt and M. F. Hasler, Dec 29 2015

A234957 Highest power of 4 dividing n.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 16, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 16, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 16, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 64, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 16
Offset: 1

Views

Author

Tom Edgar, Jan 01 2014

Keywords

Comments

The generalized binomial coefficients produced by this sequence provide an analog to Kummer's Theorem using arithmetic in base 4.
In the binary representation of n, remove zeros from the right until the number of zeros is even, then remove all but the rightmost one bit. - Ralf Stephan, Jan 05 2014

Examples

			Since 8=4*2, then a(8)=4. Likewise, since 4 does not divide 9, a(9)=1.
		

Crossrefs

Programs

  • Mathematica
    Table[4^(IntegerExponent[n, 4]), {n, 1, 50}] (* G. C. Greubel, Apr 13 2017 *)
  • PARI
    a(n)=4^valuation(n,4) \\ Charles R Greathouse IV, Aug 05 2015
    
  • Python
    def A234957(n): return 1<<((~n&n-1).bit_length()&-2) # Chai Wah Wu, Jul 08 2022
  • Sage
    n=200 #change n for more terms
    [4^(valuation(i,4)) for i in [1..n]]
    

Formula

a(n) = 4^(valuation(n,4)).
a(n) = 4^(floor(valuation(n,2)/2)) = 4^A004526(A007814(n)). Recurrence: a(4n) = 4a(n), a(4n+k) = 1 for k=1,2,3. - Ralf Stephan, Jan 05 2014
G.f.: x/(1 - x) + 3 * Sum_{k>=1} 4^(k-1)*x^(4^k)/(1 - x^(4^k)). - Ilya Gutkovskiy, Jul 10 2019
From Amiram Eldar, Dec 31 2022: (Start)
Multiplicative with a(2^e) = 2^(2*floor(e/2)), and a(p^e) = 1 if p >= 3.
Dirichlet g.f.: zeta(s)*(4^s-1)/(4^s-4).
Sum_{k=1..n} a(k) ~ (3/(8*log(2)))*n*log(n) + (5/8 + 3*(gamma-1)/(8*log(2)))*n, where gamma is Euler's constant (A001620). (End)

Extensions

Keyword:mult added by Andrew Howroyd, Jul 23 2018

A264974 Self-inverse permutation of natural numbers: a(n) = A263273(4*n) / 4.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 16, 9, 10, 19, 12, 13, 14, 15, 8, 17, 18, 11, 20, 21, 34, 43, 48, 25, 52, 27, 28, 55, 30, 37, 46, 57, 22, 49, 36, 31, 58, 39, 40, 41, 42, 23, 50, 45, 32, 59, 24, 35, 44, 51, 26, 53, 54, 29, 56, 33, 38, 47, 60, 61, 142, 63, 88, 169, 102, 115, 124, 129, 70, 151, 144, 97, 178, 75, 106, 133, 156, 79, 160, 81
Offset: 0

Views

Author

Antti Karttunen, Dec 05 2015

Keywords

Crossrefs

Terms of A264986 halved.
Cf. also A264975, A264976.

Programs

  • Python
    from sympy import factorint
    from sympy.ntheory.factor_ import digits
    from operator import mul
    def a030102(n): return 0 if n==0 else int(''.join(map(str, digits(n, 3)[1:][::-1])), 3)
    def a038502(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==3 else i**f[i] for i in f])
    def a038500(n): return n/a038502(n)
    def a263273(n): return 0 if n==0 else a030102(a038502(n))*a038500(n)
    def a(n): return a263273(4*n)/4 # Indranil Ghosh, May 25 2017

Formula

a(n) = A263273(4*n) / 4.
a(n) = A264986(n) / 2 = A263272(2*n) / 2.
As a composition of related permutations:
a(n) = A264975(A263272(n)) = A263272(A264976(n)).
Other identities. For all n >= 0:
a(3*n) = 3*a(n).
A000035(a(n)) = A000035(n). [This permutation preserves the parity of n.]
A264978(n) = a(2n)/2. [Thus the restriction onto even numbers induces yet another permutation.]

A264985 Self-inverse permutation of nonnegative integers: a(n) = (A264983(n)-1) / 2.

Original entry on oeis.org

0, 1, 3, 2, 4, 9, 6, 10, 12, 5, 7, 11, 8, 13, 27, 18, 28, 36, 15, 19, 33, 24, 31, 30, 21, 37, 39, 14, 16, 32, 23, 22, 29, 20, 34, 38, 17, 25, 35, 26, 40, 81, 54, 82, 108, 45, 55, 99, 72, 85, 90, 63, 109, 117, 42, 46, 96, 69, 58, 87, 60, 100, 114, 51, 73, 105, 78, 94, 84, 57, 91, 111, 48, 64, 102, 75, 112, 93, 66, 118, 120, 41
Offset: 0

Views

Author

Antti Karttunen, Dec 05 2015

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{g, h}, g[x_] := x/3^IntegerExponent[x, 3]; h[x_] := x/g@ x; If[n == 0, 0, FromDigits[Reverse@ IntegerDigits[#, 3], 3] &@ g[n] h[n]]]; t = Select[f /@ Range@ 1000, OddQ]; Table[(t[[n + 1]] - 1)/2, {n, 0, 81}] (* Michael De Vlieger, Jan 04 2016, after Jean-François Alcover at A263273 *)
  • Python
    from sympy import factorint
    from sympy.ntheory.factor_ import digits
    from operator import mul
    def a030102(n): return 0 if n==0 else int(''.join(map(str, digits(n, 3)[1:][::-1])), 3)
    def a038502(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==3 else i**f[i] for i in f])
    def a038500(n): return n/a038502(n)
    def a263273(n): return 0 if n==0 else a030102(a038502(n))*a038500(n)
    def a(n): return (a263273(2*n + 1) - 1)/2 # Indranil Ghosh, May 22 2017
  • Scheme
    (define (A264985 n) (/ (- (A264983 n) 1) 2))
    

Formula

a(n) = (A264983(n)-1) / 2 = (1/2) * (A263273(2n + 1) - 1).

A265352 Permutation of nonnegative integers: a(n) = A263273(A263272(n)).

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 6, 19, 8, 9, 10, 5, 12, 13, 22, 21, 64, 23, 18, 55, 20, 57, 58, 25, 24, 73, 26, 27, 28, 11, 30, 31, 16, 15, 46, 17, 36, 37, 14, 39, 40, 67, 66, 199, 68, 63, 190, 65, 192, 193, 70, 69, 208, 71, 54, 163, 56, 165, 166, 61, 60, 181, 62, 171, 172, 59, 174, 175, 76, 75, 226, 77, 72, 217, 74, 219, 220, 79, 78, 235, 80, 81
Offset: 0

Views

Author

Antti Karttunen, Dec 07 2015

Keywords

Comments

Composition of A263273 with the permutation obtained from its even bisection.

Crossrefs

Programs

  • Python
    from sympy import factorint
    from sympy.ntheory.factor_ import digits
    from operator import mul
    def a030102(n): return 0 if n==0 else int(''.join(map(str, digits(n, 3)[1:][::-1])), 3)
    def a038502(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==3 else i**f[i] for i in f])
    def a038500(n): return n/a038502(n)
    def a263273(n): return 0 if n==0 else a030102(a038502(n))*a038500(n)
    def a(n): return a263273(a263273(2*n)/2) # Indranil Ghosh, Jun 08 2017
  • Scheme
    (define (A265352 n) (A263273 (A263272 n)))
    

Formula

a(n) = A263273(A263272(n)).
As a composition of other related permutations:
a(n) = A265368(A264974(n)).
Other identities. For all n >= 0:
a(3*n) = 3*a(n).

A355582 a(n) is the largest 5-smooth divisor of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 1, 8, 9, 10, 1, 12, 1, 2, 15, 16, 1, 18, 1, 20, 3, 2, 1, 24, 25, 2, 27, 4, 1, 30, 1, 32, 3, 2, 5, 36, 1, 2, 3, 40, 1, 6, 1, 4, 45, 2, 1, 48, 1, 50, 3, 4, 1, 54, 5, 8, 3, 2, 1, 60, 1, 2, 9, 64, 5, 6, 1, 4, 3, 10, 1, 72, 1, 2, 75, 4, 1, 6, 1, 80
Offset: 1

Views

Author

Amiram Eldar, Jul 08 2022

Keywords

Crossrefs

Cf. A379005 (rgs-transform), A379006 (ordinal transform).

Programs

  • Mathematica
    a[n_] := Times @@ ({2, 3, 5}^IntegerExponent[n, {2, 3, 5}]); Array[a, 100]
  • PARI
    a(n) = 3^valuation(n, 3) * 5^valuation(n, 5) << valuation(n, 2);
    
  • Python
    from sympy import multiplicity as v
    def a(n): return 2**v(2, n) * 3**v(3, n) * 5**v(5, n)
    print([a(n) for n in range(1, 81)]) # Michael S. Branicky, Jul 08 2022

Formula

Multiplicative with a(p^e) = p^e if p <= 5 and 1 otherwise.
a(n) = A006519(n) * A038500(n) * A060904(n).
a(n) = 2^A007814(n) * 3^A007949(n) * 5^A112765(n).
a(n) = n / A165725(n).
Dirichlet g.f.: zeta(s)*(2^s-1)*(3^s-1)*(5^s-1)/((2^s-2)*(3^s-3)*(5^s-5)). - Amiram Eldar, Dec 25 2022
Sum_{k=1..n} a(k) ~ 2*n*log(n)^3 / (45*log(2)*log(3)*log(5)) + O(n*log(n)^2). - Vaclav Kotesovec, Apr 20 2025

A060828 Size of the Sylow 3-subgroup of the symmetric group S_n.

Original entry on oeis.org

1, 1, 1, 3, 3, 3, 9, 9, 9, 81, 81, 81, 243, 243, 243, 729, 729, 729, 6561, 6561, 6561, 19683, 19683, 19683, 59049, 59049, 59049, 1594323, 1594323, 1594323, 4782969, 4782969, 4782969, 14348907, 14348907, 14348907, 129140163, 129140163, 129140163, 387420489
Offset: 0

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 30 2001

Keywords

Examples

			a(3) = 3 because in S_3 the Sylow 3-subgroup is the subgroup generated by the 3-cycles (123) and (132), its order is 3.
		

Crossrefs

Programs

  • Mathematica
    (* By the formula: *) Table[3^IntegerExponent[n!, 3], {n, 0, 40}] (* Bruno Berselli, Aug 05 2013 *)
  • PARI
    for (n=0, 200, s=0; d=3; while (n>=d, s+=n\d; d*=3); write("b060828.txt", n, " ", 3^s)) \\ Harry J. Smith, Jul 12 2009
    
  • Sage
    def A060828(n):
        A004128 = lambda n: A004128(n//3) + n if n > 0 else 0
        return 3^A004128(n//3)
    [A060828(i) for i in (0..39)]  # Peter Luschny, Nov 16 2012

Formula

a(n) = 3^A054861(n) = 3^(floor(n/3) + floor(n/9) + floor(n/27) + floor(n/81) + ...).
a(n) = Product_{i=1..n} A038500(i). - Tom Edgar, Apr 30 2014
a(n) = 3^(n/2 + O(log n)). - Charles R Greathouse IV, Aug 05 2015

Extensions

More terms from N. J. A. Sloane, Jul 03 2008

A265351 Permutation of nonnegative integers: a(n) = A263272(A263273(n)).

Original entry on oeis.org

0, 1, 2, 3, 4, 11, 6, 5, 8, 9, 10, 29, 12, 13, 38, 33, 32, 35, 18, 7, 20, 15, 14, 17, 24, 23, 26, 27, 28, 83, 30, 31, 92, 87, 86, 89, 36, 37, 110, 39, 40, 119, 114, 113, 116, 99, 34, 101, 96, 95, 98, 105, 104, 107, 54, 19, 56, 21, 22, 65, 60, 59, 62, 45, 16, 47, 42, 41, 44, 51, 50, 53, 72, 25, 74, 69, 68, 71, 78, 77, 80, 81
Offset: 0

Views

Author

Antti Karttunen, Dec 07 2015

Keywords

Comments

Composition of A263273 with the permutation obtained from its even bisection.

Crossrefs

Programs

  • Python
    from sympy import factorint
    from sympy.ntheory.factor_ import digits
    from operator import mul
    def a030102(n): return 0 if n==0 else int(''.join(map(str, digits(n, 3)[1:][::-1])), 3)
    def a038502(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==3 else i**f[i] for i in f])
    def a038500(n): return n/a038502(n)
    def a263273(n): return 0 if n==0 else a030102(a038502(n))*a038500(n)
    def a263272(n): return a263273(2*n)/2
    def a(n): return a263272(a263273(n)) # Indranil Ghosh, May 25 2017
  • Scheme
    (define (A265351 n) (A263272 (A263273 n)))
    

Formula

a(n) = A263272(A263273(n)).
As a composition of other related permutations:
a(n) = A264974(A265367(n)).
Other identities. For all n >= 0:
a(3*n) = 3*a(n).
a(n) = A265342(n)/2.

A265354 Permutation of nonnegative integers: a(n) = A263273(A264985(n)).

Original entry on oeis.org

0, 1, 3, 2, 4, 9, 6, 10, 12, 7, 5, 19, 8, 13, 27, 18, 28, 36, 21, 11, 57, 24, 37, 30, 15, 31, 39, 22, 16, 64, 23, 14, 55, 20, 46, 58, 25, 17, 73, 26, 40, 81, 54, 82, 108, 63, 29, 171, 72, 109, 90, 45, 85, 117, 66, 34, 192, 69, 38, 165, 60, 100, 174, 75, 35, 219, 78, 118, 84, 33, 91, 93, 48, 32, 138, 51, 112, 111, 42, 94, 120, 67
Offset: 0

Views

Author

Antti Karttunen, Dec 07 2015

Keywords

Comments

Composition of A263273 with the permutation obtained from its odd bisection.

Crossrefs

Inverse: A265353.
Cf. also A265352, A265355, A265356.

Programs

  • Python
    from sympy import factorint
    from sympy.ntheory.factor_ import digits
    from operator import mul
    def a030102(n): return 0 if n==0 else int(''.join(map(str, digits(n, 3)[1:][::-1])), 3)
    def a038502(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==3 else i**f[i] for i in f])
    def a038500(n): return n/a038502(n)
    def a263273(n): return 0 if n==0 else a030102(a038502(n))*a038500(n)
    def a264985(n): return (a263273(2*n + 1) - 1)/2
    def a(n): return a263273(a264985(n)) # Indranil Ghosh, May 22 2017
  • Scheme
    (define (A265354 n) (A263273 (A264985 n)))
    

Formula

a(n) = A263273(A264985(n)).
Previous Showing 11-20 of 67 results. Next