A111636
Triangle read by rows: T(n,k) (0<=k<=n) is the number of labeled graphs having k blue nodes and n-k green ones and only nodes of different colors can be joined by an edge.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 12, 12, 1, 1, 32, 96, 32, 1, 1, 80, 640, 640, 80, 1, 1, 192, 3840, 10240, 3840, 192, 1, 1, 448, 21504, 143360, 143360, 21504, 448, 1, 1, 1024, 114688, 1835008, 4587520, 1835008, 114688, 1024, 1, 1, 2304, 589824, 22020096, 132120576, 132120576, 22020096, 589824, 2304, 1
Offset: 0
T(2,1)=4 because we have B G, B--G, G B and G--B, where B (G) stands for a blue (green) node and -- denotes an edge.
Triangle starts:
1;
1, 1;
1, 4, 1;
1, 12, 12, 1;
1, 32, 96, 32, 1;
...
- H. S. Wilf, Generatingfunctionology, 2nd edn., Academic Press, NY, 1994, p. 88, Eq. 3.11.2.
- S. R. Finch, Bipartite, k-colorable and k-colored graphs
- S. R. Finch, Bipartite, k-colorable and k-colored graphs, June 5, 2003. [Cached copy, with permission of the author]
- W. Wang and T. Wang, Generalized Riordan array, Discrete Mathematics, Vol. 308, No. 24, 6466-6500.
-
T:=(n,k)->binomial(n,k)*2^(k*(n-k)): for n from 0 to 9 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
-
nn=6;f[x_,y_]:=Sum[Exp[x 2^n](y x)^n/n!,{n,0,nn}];Range[0,nn]!CoefficientList[Series[f[x,y],{x,0,nn}],{x,y}]//Grid (* Geoffrey Critzer, Sep 07 2013 *)
A045543
6-fold convolution of A000302 (powers of 4); expansion of 1/(1-4*x)^6.
Original entry on oeis.org
1, 24, 336, 3584, 32256, 258048, 1892352, 12976128, 84344832, 524812288, 3148873728, 18320719872, 103817412608, 574988746752, 3121367482368, 16647293239296, 87398289506304, 452414675091456, 2312341672689664, 11683410556747776, 58417052783738880, 289303499500421120
Offset: 0
-
List([0..30], n-> 4^n*Binomial(n+5,5)); # G. C. Greubel, Jul 20 2019
-
[4^n*Binomial(n+5, 5): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
-
seq(seq(binomial(i+5, j)*4^i, j =i), i=0..30); # Zerinvary Lajos, Dec 03 2007
seq(binomial(n+5,5)*4^n,n=0..30); # Zerinvary Lajos, Jun 16 2008
-
CoefficientList[Series[1/(1-4x)^6,{x,0,30}],x] (* or *) LinearRecurrence[ {24,-240,1280,-3840,6144,-4096}, {1,24,336,3584,32256, 258048}, 30] (* Harvey P. Dale, Mar 24 2018 *)
-
Vec(1/(1-4*x)^6 + O(x^30)) \\ Michel Marcus, Aug 21 2015
-
[lucas_number2(n, 4, 0)*binomial(n,5)/2^10 for n in range(5, 35)] # Zerinvary Lajos, Mar 11 2009
Original entry on oeis.org
1, 15, 142, 1083, 7266, 44758, 259356, 1435347, 7663898, 39761282, 201483204, 1001098462, 4891910100, 23565178380, 112118316088, 527674017411, 2459747256138, 11368724035210, 52145629874100, 237541552456362
Offset: 0
-
[(Binomial(n+5,4)*Catalan(n+4) -5*4^(n+1)*Binomial(n+3,2))/10: n in [0..40]]; // G. C. Greubel, Jul 19 2024
-
Table[(Binomial[n+5,4]*CatalanNumber[n+4] -5*4^(n+1)*Binomial[n+3,2] )/10, {n,0,40}] (* G. C. Greubel, Jul 19 2024 *)
-
[(binomial(n+5,4)*catalan_number(n+4) - 5*4^(n+1)*binomial(n+3,2))/10 for n in range(41)] # G. C. Greubel, Jul 19 2024
A367022
Triangle read by rows, T(n, k) = [x^k] p(n), where p(n) = 4^n * hypergeom([1/2, -n - 1, -n], [2, 2], x).
Original entry on oeis.org
1, 4, 1, 16, 12, 2, 64, 96, 48, 5, 256, 640, 640, 200, 14, 1024, 3840, 6400, 4000, 840, 42, 4096, 21504, 53760, 56000, 23520, 3528, 132, 16384, 114688, 401408, 627200, 439040, 131712, 14784, 429, 65536, 589824, 2752512, 6021120, 6322176, 3161088, 709632, 61776, 1430
Offset: 0
Triangle T(n, k) starts:
[0] 1;
[1] 4, 1;
[2] 16, 12, 2;
[3] 64, 96, 48, 5;
[4] 256, 640, 640, 200, 14;
[5] 1024, 3840, 6400, 4000, 840, 42;
[6] 4096, 21504, 53760, 56000, 23520, 3528, 132;
[7] 16384, 114688, 401408, 627200, 439040, 131712, 14784, 429;
[8] 65536, 589824, 2752512, 6021120, 6322176, 3161088, 709632, 61776, 1430;
-
p := n -> 4^n*hypergeom([1/2, -n - 1, -n], [2, 2], x):
T := (n, k) -> coeff(simplify(p(n)), x, k):
seq(seq(T(n, k), k = 0..n), n = 0..8);
-
T[n_,k_]:=4^(n-k)*Binomial[n,k]*Binomial[n+1,k]*Binomial[2*k,k]/(k+1)^2;Flatten[Table[T[n,k],{n,0,8},{k,0,n}]] (* Detlef Meya, Nov 20 2023 *)
A129532
3n(n-1)4^(n-2).
Original entry on oeis.org
0, 0, 6, 72, 576, 3840, 23040, 129024, 688128, 3538944, 17694720, 86507520, 415236096, 1962934272, 9160359936, 42278584320, 193273528320, 876173328384, 3942779977728, 17626545782784, 78340203479040, 346346162749440
Offset: 0
-
seq(3*n*(n-1)*4^(n-2),n=0..25);
-
Table[3n(n-1)4^(n-2),{n,0,30}] (* or *) LinearRecurrence[{12,-48,64},{0,0,6},30] (* Harvey P. Dale, May 25 2018 *)
A082150
A transform of C(n,2).
Original entry on oeis.org
0, 0, 1, 9, 60, 360, 2040, 11088, 58240, 297216, 1480320, 7223040, 34636800, 163657728, 763549696, 3523645440, 16107110400, 73016672256, 328570011648, 1468890021888, 6528375193600, 28862235279360, 126993714118656
Offset: 0
-
List([0..23], n-> Binomial(n,2)*(2^(n-2)+4^(n-2))/2); # Muniru A Asiru, Feb 12 2018
-
[Binomial(n,2)*(2^(n-2) + 4^(n-2))/2: n in [0..30]]; // G. C. Greubel, Feb 10 2018
-
A082150:=[seq(binomial(n,2)*(2^(n-2)+4^(n-2))/2,n=0..23)]; # Muniru A Asiru, Feb 12 2018
-
CoefficientList[Series[(x^2/(1-2*x)^3 + x^2/(1-4*x)^3)/2, {x,0,50}], x] (* or *) Table[Binomial[n,2]*(2^(n-2) + 4^(n-2))/2, {n,0,30}] (* G. C. Greubel, Feb 10 2018 *)
LinearRecurrence[{18,-132,504,-1056,1152,-512},{0,0,1,9,60,360},30] (* Harvey P. Dale, Jan 17 2022 *)
-
makelist(2^(n-4)*(2^(n-2)+1)*(n-1)*n, n, 0, 30); /* Bruno Berselli, Feb 13 2018 */
-
for(n=0,30, print1(binomial(n,2)*(2^(n-2) + 4^(n-2))/2, ", ")) \\ G. C. Greubel, Feb 10 2018
A052780
Expansion of e.g.f. x^2*exp(4*x).
Original entry on oeis.org
0, 0, 2, 24, 192, 1280, 7680, 43008, 229376, 1179648, 5898240, 28835840, 138412032, 654311424, 3053453312, 14092861440, 64424509440, 292057776128, 1314259992576, 5875515260928, 26113401159680
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
List([0..30], n-> 4^(n-2)*n*(n-1)); # G. C. Greubel, Jul 20 2019
-
[4^(n-2)*n*(n-1): n in [0..30]]; // G. C. Greubel, Jul 20 2019
-
spec := [S,{B=Set(Z),S=Prod(Z,Z,B,B,B,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
seq(n*(n-1)*4^(n-2), n=0..20); # Zerinvary Lajos, Apr 25 2007
-
Table[4^(n-2)*n*(n-1), {n,0,30}] (* G. C. Greubel, Jul 20 2019 *)
With[{nn=20},CoefficientList[Series[x^2 Exp[4x],{x,0,nn}],x] Range[0,nn]!] (* or *) LinearRecurrence[{12,-48,64},{0,0,2},30] (* Harvey P. Dale, Sep 28 2022 *)
-
vector(30, n, n--; 4^(n-2)*n*(n-1)) \\ G. C. Greubel, Jul 20 2019
-
[4^(n-2)*n*(n-1) for n in (0..30)] # G. C. Greubel, Jul 20 2019
A041005
Convolution of Catalan numbers A000108(n+1), n >= 0, with A020918.
Original entry on oeis.org
1, 16, 159, 1260, 8722, 55152, 326811, 1844084, 10015566, 52754624, 270976342, 1362986520, 6734927460, 32775704608, 157408497171, 747269225028, 3511471892470, 16351481223840, 75525932249922, 346305571781224
Offset: 0
A116144
a(n) = 4^n * n*(n+1).
Original entry on oeis.org
0, 8, 96, 768, 5120, 30720, 172032, 917504, 4718592, 23592960, 115343360, 553648128, 2617245696, 12213813248, 56371445760, 257698037760, 1168231104512, 5257039970304, 23502061043712, 104453604638720, 461794883665920
Offset: 0
-
List([0..30], n-> 4^n*n*(n+1)); # G. C. Greubel, May 10 2019
-
[(n^2+n)*4^n: n in [0..30]]; // Vincenzo Librandi, Feb 28 2013
-
I:=[0,8,96]; [n le 3 select I[n] else 12*Self(n-1)-48*Self(n-2)+64*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Feb 28 2013
-
Table[(n^2 + n)*4^n, {n, 0, 30}] (* Vincenzo Librandi, Feb 28 2013 *)
LinearRecurrence[{12,-48,64},{0,8,96},30] (* Harvey P. Dale, Feb 27 2015 *)
-
a(n)=(n^2+n)*4^n \\ Charles R Greathouse IV, Feb 28 2013
-
[4^n*n*(n+1) for n in (0..30)] # G. C. Greubel, May 10 2019
Original entry on oeis.org
0, 0, 32, 384, 3072, 20480, 122880, 688128, 3670016, 18874368, 94371840, 461373440, 2214592512, 10468982784, 48855252992, 225485783040, 1030792151040, 4672924418048, 21028159881216, 94008244174848, 417814418554880
Offset: 0
-
[(n^2-n)*4^n: n in [0..20]]; // Vincenzo Librandi, Feb 10 2013
-
CoefficientList[Series[32 x^2/(1 - 4 x)^3, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 10 2013 *)
LinearRecurrence[{12,-48,64},{0,0,32},30] (* Harvey P. Dale, Dec 23 2015 *)
Comments