cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 34 results. Next

A111636 Triangle read by rows: T(n,k) (0<=k<=n) is the number of labeled graphs having k blue nodes and n-k green ones and only nodes of different colors can be joined by an edge.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 12, 12, 1, 1, 32, 96, 32, 1, 1, 80, 640, 640, 80, 1, 1, 192, 3840, 10240, 3840, 192, 1, 1, 448, 21504, 143360, 143360, 21504, 448, 1, 1, 1024, 114688, 1835008, 4587520, 1835008, 114688, 1024, 1, 1, 2304, 589824, 22020096, 132120576, 132120576, 22020096, 589824, 2304, 1
Offset: 0

Views

Author

Emeric Deutsch, Aug 09 2005

Keywords

Comments

Row sums yield A047863. T(2*n,n) = A111637(n). T(n,1) = A001787(n).

Examples

			T(2,1)=4 because we have B G, B--G, G B and G--B, where B (G) stands for a blue (green) node and -- denotes an edge.
Triangle starts:
  1;
  1,  1;
  1,  4,  1;
  1, 12, 12,  1;
  1, 32, 96, 32, 1;
  ...
		

References

  • H. S. Wilf, Generatingfunctionology, 2nd edn., Academic Press, NY, 1994, p. 88, Eq. 3.11.2.

Crossrefs

Cf. A134530 (matrix log), A134531.
Cf. A000684, A011266, A038845, A140802, A224069 (matrix inverse).

Programs

  • Maple
    T:=(n,k)->binomial(n,k)*2^(k*(n-k)): for n from 0 to 9 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    nn=6;f[x_,y_]:=Sum[Exp[x 2^n](y x)^n/n!,{n,0,nn}];Range[0,nn]!CoefficientList[Series[f[x,y],{x,0,nn}],{x,y}]//Grid (* Geoffrey Critzer, Sep 07 2013 *)

Formula

T(n, k)=2^[k(n-k)]*C(n, k).
Matrix log yields triangle A134530, where A134530(n,k) = A134531(n-k)*(2^k)^(n-k)*C(n,k). - Paul D. Hanna, Nov 11 2007
From Peter Bala, Aug 13 2012: (Start)
Let f(n) = n!*2^binomial(n,2) = A011266(n). Then T(n,k) = f(n)/(f(k)*f(n-k)).
E.g.f.: Sum_{n >= 0} exp(2^n*t*x)*x^n/n! = 1 + (1+t)*x + (1+4*t+t^2)*x^2/2! + ....
O.g.f.: Sum_{n >= 0} x^n/(1-2^n*t*x)^(n+1) = 1 + (1+t)*x + (1+4*t+t^2)*x^2 + .... O.g.f. for column k: 1/(1-2^k*x)^(k+1).
Recurrence equation: T(n,k) = 2^k*T(n-1,k) + 2^(n-k)*T(n-1,k-1).
Column k = 2: A038845. Column k = 3: A140802. Sum_{k = 0..n} k*T(n,k) = n*A000684(n). (End)
From Peter Bala, Apr 09 2013: (Start)
Let E(x) = Sum_{n >= 0} x^n/(n!*2^C(n,2)) = 1 + x + x^2/(2!*2) + x^3/(3!*2^3) + .... Then a generating function for this sequence is E(z)*E(x*z) = 1 + (1 + x)*z + (1 + 4*x + x^2)*z^2/(2!*2) + (1 + 12*x + 12*x^2 + x^3)*z^3/(3!*2^3) + .... Cf. Pascal's triangle A007318 with an e.g.f. of exp(z)*exp(x*z).
This is a generalized Riordan array (E(x), x) with respect to the sequence n!*2^C(n,2), as defined by Wang and Wang.
The n-th power of this triangle has a generating function E(z)^n*E(x*z). See A224069 for the inverse array (n = -1).
The n-th row is a log-concave sequence and hence unimodal.
The row polynomials satisfy the recurrence equation R(n+1,x) = 2^n*x*R(n,x/2) + R(n,2*x) with R(0,x) = 1, as well as R'(n,2*x) = n*2^(n-1)*R(n-1,x) (the ' denotes differentiation w.r.t. x). The row polynomials appear to have only real zeros.
Sum_{k = 0..n} (-1)^k*T(2*n+1,k) = 0;
Sum_{k = 0..n} (-1)^k*2^k*T(2*n,k) = 0;
Sum_{k = 0..n} 2^k*T(n,k) = A000684(n). (End)
T(n,k+1) = Product_{i=0..k} (T(n-i,1)/T(i+1,1)) for 0 <= k < n. - Werner Schulte, Nov 13 2018

A045543 6-fold convolution of A000302 (powers of 4); expansion of 1/(1-4*x)^6.

Original entry on oeis.org

1, 24, 336, 3584, 32256, 258048, 1892352, 12976128, 84344832, 524812288, 3148873728, 18320719872, 103817412608, 574988746752, 3121367482368, 16647293239296, 87398289506304, 452414675091456, 2312341672689664, 11683410556747776, 58417052783738880, 289303499500421120
Offset: 0

Views

Author

Keywords

Comments

Also convolution of A020922 with A000984 (central binomial coefficients); also convolution of A040075 with A000302 (powers of 4).
With a different offset, number of n-permutations of 5 objects: u,v,z,x, y with repetition allowed, containing exactly five (5) u's. Example: a(1)=24 because we have uuuuuv uuuuvu uuuvuu uuvuuu uvuuuu vuuuuu uuuuuz uuuuzu uuuzuu uuzuuu uzuuuu zuuuuu uuuuux uuuuxu uuuxuu uuxuuu uxuuuu xuuuuu uuuuuy uuuuyu uuuyuu uuyuuu uyuuuu yuuuuu. - Zerinvary Lajos, Jun 16 2008
Also convolution of A002457 with A020920, also convolution of A002697 with A038846, also convolution of A002802 with A020918, also convolution of A038845 with A038845. - Rui Duarte, Oct 08 2011

Crossrefs

Cf. A038231.

Programs

  • GAP
    List([0..30], n-> 4^n*Binomial(n+5,5)); # G. C. Greubel, Jul 20 2019
  • Magma
    [4^n*Binomial(n+5, 5): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
    
  • Maple
    seq(seq(binomial(i+5, j)*4^i, j =i), i=0..30); # Zerinvary Lajos, Dec 03 2007
    seq(binomial(n+5,5)*4^n,n=0..30); # Zerinvary Lajos, Jun 16 2008
  • Mathematica
    CoefficientList[Series[1/(1-4x)^6,{x,0,30}],x] (* or *) LinearRecurrence[ {24,-240,1280,-3840,6144,-4096}, {1,24,336,3584,32256, 258048}, 30] (* Harvey P. Dale, Mar 24 2018 *)
  • PARI
    Vec(1/(1-4*x)^6 + O(x^30)) \\ Michel Marcus, Aug 21 2015
    
  • Sage
    [lucas_number2(n, 4, 0)*binomial(n,5)/2^10 for n in range(5, 35)] # Zerinvary Lajos, Mar 11 2009
    

Formula

a(n) = binomial(n+5, 5)*4^n.
G.f.: 1/(1-4*x)^6.
a(n) = Sum_{ i_1+i_2+i_3+i_4+i_5+i_6+i_7+i_8+i_9+i_10+i_11+i_12 = n} f(i_1)* f(i_2)*f(i_3)*f(i_4)*f(i_5)*f(i_6)*f(i_7)*f(i_8)*f(i_9)*f(i_10) *f(i_11)*f(i_12), with f(k)=A000984(k). - Rui Duarte, Oct 08 2011
E.g.f.: (15 + 120*x + 240*x^2 + 160*x^3 + 32*x^4)*exp(4*x)/3. - G. C. Greubel, Jul 20 2019
From Amiram Eldar, Mar 25 2022: (Start)
Sum_{n>=0} 1/a(n) = 1620*log(4/3) - 465.
Sum_{n>=0} (-1)^n/a(n) = 12500*log(5/4) - 8365/3. (End)

A045724 Convolution of Catalan numbers A000108 with A020918.

Original entry on oeis.org

1, 15, 142, 1083, 7266, 44758, 259356, 1435347, 7663898, 39761282, 201483204, 1001098462, 4891910100, 23565178380, 112118316088, 527674017411, 2459747256138, 11368724035210, 52145629874100, 237541552456362
Offset: 0

Views

Author

Keywords

Comments

Also convolution of A001700 with A038845; also convolution of A029887 with A000302 (powers of 4); also convolution of A042941 with A000984 (central binomial coefficients).

Crossrefs

Programs

  • Magma
    [(Binomial(n+5,4)*Catalan(n+4) -5*4^(n+1)*Binomial(n+3,2))/10: n in [0..40]]; // G. C. Greubel, Jul 19 2024
    
  • Mathematica
    Table[(Binomial[n+5,4]*CatalanNumber[n+4] -5*4^(n+1)*Binomial[n+3,2] )/10, {n,0,40}] (* G. C. Greubel, Jul 19 2024 *)
  • SageMath
    [(binomial(n+5,4)*catalan_number(n+4) - 5*4^(n+1)*binomial(n+3,2))/10 for n in range(41)] # G. C. Greubel, Jul 19 2024

Formula

a(n) = binomial(n+4, 3)*A000984(n+4)/(2*A000984(3)) - (n+3)*(n+2)*4^n, where A000984(n) = binomial(2*n, n),
G.f.: c(x)/(1-4*x)^(7/2) = (2 - c(x))/(1-4*x)^4, where c(x) = g.f. for Catalan numbers.

A367022 Triangle read by rows, T(n, k) = [x^k] p(n), where p(n) = 4^n * hypergeom([1/2, -n - 1, -n], [2, 2], x).

Original entry on oeis.org

1, 4, 1, 16, 12, 2, 64, 96, 48, 5, 256, 640, 640, 200, 14, 1024, 3840, 6400, 4000, 840, 42, 4096, 21504, 53760, 56000, 23520, 3528, 132, 16384, 114688, 401408, 627200, 439040, 131712, 14784, 429, 65536, 589824, 2752512, 6021120, 6322176, 3161088, 709632, 61776, 1430
Offset: 0

Views

Author

Peter Luschny, Nov 06 2023

Keywords

Examples

			Triangle T(n, k) starts:
  [0]     1;
  [1]     4,      1;
  [2]    16,     12,       2;
  [3]    64,     96,      48,       5;
  [4]   256,    640,     640,     200,      14;
  [5]  1024,   3840,    6400,    4000,     840,      42;
  [6]  4096,  21504,   53760,   56000,   23520,    3528,    132;
  [7] 16384, 114688,  401408,  627200,  439040,  131712,  14784,   429;
  [8] 65536, 589824, 2752512, 6021120, 6322176, 3161088, 709632, 61776, 1430;
		

Crossrefs

Cf. A038845 (column 1), A128088, A005802, A246513, A001263.

Programs

  • Maple
    p := n -> 4^n*hypergeom([1/2, -n - 1, -n], [2, 2], x):
    T := (n, k) -> coeff(simplify(p(n)), x, k):
    seq(seq(T(n, k), k = 0..n), n = 0..8);
  • Mathematica
    T[n_,k_]:=4^(n-k)*Binomial[n,k]*Binomial[n+1,k]*Binomial[2*k,k]/(k+1)^2;Flatten[Table[T[n,k],{n,0,8},{k,0,n}]] (* Detlef Meya, Nov 20 2023 *)

Formula

From Detlef Meya, Nov 20 2023: (Start)
T(n, k) = 4^(n - k)*binomial(n, k)*binomial(n+1, k)*binomial(2*k, k)/(k + 1)^2.
T(n, k) = A001263(n+1, k+1)*4^(n - k)*binomial(2*k, k)/(k + 1). (End)

A129532 3n(n-1)4^(n-2).

Original entry on oeis.org

0, 0, 6, 72, 576, 3840, 23040, 129024, 688128, 3538944, 17694720, 86507520, 415236096, 1962934272, 9160359936, 42278584320, 193273528320, 876173328384, 3942779977728, 17626545782784, 78340203479040, 346346162749440
Offset: 0

Views

Author

Emeric Deutsch, Apr 22 2007

Keywords

Comments

Number of inversions in all 4-ary words of length n on {0,1,2,3}. Example: a(2)=6 because each of the words 10,20,30,21,31,32 has one inversion and the words 00,01,02,03,11,12,13,22,23,33 have no inversions. a(n)=Sum(k*A129531(n,k),k>=0). a(n)=6*A038845(n-2).

Crossrefs

Programs

  • Maple
    seq(3*n*(n-1)*4^(n-2),n=0..25);
  • Mathematica
    Table[3n(n-1)4^(n-2),{n,0,30}] (* or *) LinearRecurrence[{12,-48,64},{0,0,6},30] (* Harvey P. Dale, May 25 2018 *)

Formula

G.f.=6x^2/(1-4x)^3.

A082150 A transform of C(n,2).

Original entry on oeis.org

0, 0, 1, 9, 60, 360, 2040, 11088, 58240, 297216, 1480320, 7223040, 34636800, 163657728, 763549696, 3523645440, 16107110400, 73016672256, 328570011648, 1468890021888, 6528375193600, 28862235279360, 126993714118656
Offset: 0

Views

Author

Paul Barry, Apr 07 2003

Keywords

Comments

Represents the mean of the first and third binomial transforms of C(n,2) Binomial transform of A082149.

Crossrefs

Programs

  • GAP
    List([0..23], n-> Binomial(n,2)*(2^(n-2)+4^(n-2))/2); # Muniru A Asiru, Feb 12 2018
    
  • Magma
    [Binomial(n,2)*(2^(n-2) + 4^(n-2))/2: n in [0..30]]; // G. C. Greubel, Feb 10 2018
    
  • Maple
    A082150:=[seq(binomial(n,2)*(2^(n-2)+4^(n-2))/2,n=0..23)]; # Muniru A Asiru, Feb 12 2018
  • Mathematica
    CoefficientList[Series[(x^2/(1-2*x)^3 + x^2/(1-4*x)^3)/2, {x,0,50}], x] (* or *) Table[Binomial[n,2]*(2^(n-2) + 4^(n-2))/2, {n,0,30}] (* G. C. Greubel, Feb 10 2018 *)
    LinearRecurrence[{18,-132,504,-1056,1152,-512},{0,0,1,9,60,360},30] (* Harvey P. Dale, Jan 17 2022 *)
  • Maxima
    makelist(2^(n-4)*(2^(n-2)+1)*(n-1)*n, n, 0, 30); /* Bruno Berselli, Feb 13 2018 */
  • PARI
    for(n=0,30, print1(binomial(n,2)*(2^(n-2) + 4^(n-2))/2, ", ")) \\ G. C. Greubel, Feb 10 2018
    

Formula

a(n) = C(n, 2)*(2^(n-2) + 4^(n-2))/2.
G.f.: (x^2/(1-2*x)^3 + x^2/(1-4*x)^3)/2.
G.f.: x^2*(36*x^3 - 30*x^2 + 9*x-1)/((1 - 2*x)^3*(4*x - 1)^3).
E.g.f.: x^2*exp(3*x)*cosh(x)/2.
From Bruno Berselli, Feb 12 2018: (Start)
E.g.f.: x^2*(1 + exp(2*x))*exp(2*x)/4.
a(n) = 2^(n-4)*(2^(n-2) + 1)*(n - 1)*n. (End)

A052780 Expansion of e.g.f. x^2*exp(4*x).

Original entry on oeis.org

0, 0, 2, 24, 192, 1280, 7680, 43008, 229376, 1179648, 5898240, 28835840, 138412032, 654311424, 3053453312, 14092861440, 64424509440, 292057776128, 1314259992576, 5875515260928, 26113401159680
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Old name was: A simple grammar.

Crossrefs

Cf. A038845.

Programs

  • GAP
    List([0..30], n-> 4^(n-2)*n*(n-1)); # G. C. Greubel, Jul 20 2019
  • Magma
    [4^(n-2)*n*(n-1): n in [0..30]]; // G. C. Greubel, Jul 20 2019
    
  • Maple
    spec := [S,{B=Set(Z),S=Prod(Z,Z,B,B,B,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
    seq(n*(n-1)*4^(n-2), n=0..20); # Zerinvary Lajos, Apr 25 2007
  • Mathematica
    Table[4^(n-2)*n*(n-1), {n,0,30}] (* G. C. Greubel, Jul 20 2019 *)
    With[{nn=20},CoefficientList[Series[x^2 Exp[4x],{x,0,nn}],x] Range[0,nn]!] (* or *) LinearRecurrence[{12,-48,64},{0,0,2},30] (* Harvey P. Dale, Sep 28 2022 *)
  • PARI
    vector(30, n, n--; 4^(n-2)*n*(n-1)) \\ G. C. Greubel, Jul 20 2019
    
  • Sage
    [4^(n-2)*n*(n-1) for n in (0..30)] # G. C. Greubel, Jul 20 2019
    

Formula

E.g.f.: x^2*exp(x)^4.
a(n) = 2*A038845(n-2).
Recurrence: a(1)=0, a(2)=2, (n-1)*a(n+1) - 4*(n+1)*a(n) = 0.
From Ralf Stephan, Mar 26 2003: (Start)
a(n) = n*(n-1)*4^(n-2).
G.f.: 2*x^2/(1-4*x)^3. (End)

Extensions

New name from e.g.f. by Jon E. Schoenfield, Feb 07 2019

A041005 Convolution of Catalan numbers A000108(n+1), n >= 0, with A020918.

Original entry on oeis.org

1, 16, 159, 1260, 8722, 55152, 326811, 1844084, 10015566, 52754624, 270976342, 1362986520, 6734927460, 32775704608, 157408497171, 747269225028, 3511471892470, 16351481223840, 75525932249922, 346305571781224
Offset: 0

Views

Author

Keywords

Comments

Also convolution of A001791(n+1), n >= 0, with A038845; also convolution of A008549(n+1), n >= 0, with A002802; also convolution of A029760 with A002697; also convolution of A038806(n+1), n >= 0, with A002457; also convolution of A038836 with A000302 (powers of 4); also convolution of A041001 with A000984 (central binomial coefficients).

Formula

a(n)=binomial(n+7, 3)*binomial(2*(n+4), n+2)/20 - (n+4)*(n+3)*4^(n+1); G.f. (c(x)^2)/(1-4*x)^(7/2), where c(x) = g.f. for Catalan numbers.

A116144 a(n) = 4^n * n*(n+1).

Original entry on oeis.org

0, 8, 96, 768, 5120, 30720, 172032, 917504, 4718592, 23592960, 115343360, 553648128, 2617245696, 12213813248, 56371445760, 257698037760, 1168231104512, 5257039970304, 23502061043712, 104453604638720, 461794883665920
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 08 2007

Keywords

Crossrefs

Programs

Formula

From R. J. Mathar, Dec 19 2008: (Start)
G.f.: 8*x/(1-4*x)^3.
a(n) = 8*A038845(n-1). (End)
a(n) = 12*a(n-1) -48*a(n-2) +64*a(n-3). - Vincenzo Librandi, Feb 28 2013
E.g.f.: 8*x*(1 + 2*x)*exp(4*x). - G. C. Greubel, May 10 2019
From Amiram Eldar, Jul 20 2020: (Start)
Sum_{n>=1} 1/a(n) = 1 - 3*log(4/3).
Sum_{n>=1} (-1)^(n+1)/a(n) = 5*log(5/4) - 1. (End)

A128798 n*(n-1)*4^n.

Original entry on oeis.org

0, 0, 32, 384, 3072, 20480, 122880, 688128, 3670016, 18874368, 94371840, 461373440, 2214592512, 10468982784, 48855252992, 225485783040, 1030792151040, 4672924418048, 21028159881216, 94008244174848, 417814418554880
Offset: 0

Views

Author

Mohammad K. Azarian, Apr 07 2007

Keywords

Crossrefs

Programs

  • Magma
    [(n^2-n)*4^n: n in [0..20]]; // Vincenzo Librandi, Feb 10 2013
  • Mathematica
    CoefficientList[Series[32 x^2/(1 - 4 x)^3, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 10 2013 *)
    LinearRecurrence[{12,-48,64},{0,0,32},30] (* Harvey P. Dale, Dec 23 2015 *)

Formula

G.f.: 32*x^2/(1 - 4*x)^3. - Vincenzo Librandi, Feb 10 2013
a(n) =32*A038845(n-2). - R. J. Mathar, Apr 26 2015
Previous Showing 21-30 of 34 results. Next