cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 38 results. Next

A334401 Decimal expansion of sinh(Pi).

Original entry on oeis.org

1, 1, 5, 4, 8, 7, 3, 9, 3, 5, 7, 2, 5, 7, 7, 4, 8, 3, 7, 7, 9, 7, 7, 3, 3, 4, 3, 1, 5, 3, 8, 8, 4, 0, 9, 6, 8, 4, 4, 9, 5, 1, 8, 9, 0, 6, 6, 3, 9, 4, 7, 8, 9, 4, 5, 5, 2, 3, 2, 1, 6, 3, 3, 6, 1, 0, 6, 1, 6, 4, 5, 7, 9, 2, 4, 6, 6, 7, 1, 7, 4, 0, 7, 9, 0, 9, 4, 1, 6, 0, 1, 8, 5, 5, 2, 8, 2, 4, 0, 6, 7, 6, 4, 4, 4, 6, 7, 9, 4, 8
Offset: 2

Views

Author

Ilya Gutkovskiy, Apr 26 2020

Keywords

Comments

This constant is transcendental.

Examples

			(e^Pi - e^(-Pi))/2 = 11.5487393572577483779773343153884...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sinh[Pi], 10, 110] [[1]]

Formula

Equals Sum_{k>=0} Pi^(2*k+1)/(2*k+1)!.
Equals 2 * Product_{k>=1} (4*k^2+4)/(4*k^2-1).

A068470 Decimal expansion of exp(sqrt(Pi)).

Original entry on oeis.org

5, 8, 8, 5, 2, 7, 7, 2, 5, 0, 0, 1, 8, 0, 2, 8, 8, 7, 6, 6, 1, 1, 7, 6, 1, 8, 5, 3, 4, 0, 5, 7, 6, 9, 8, 0, 3, 9, 9, 0, 6, 9, 8, 6, 1, 8, 9, 8, 5, 9, 2, 4, 3, 3, 9, 3, 5, 1, 9, 8, 3, 4, 0, 7, 6, 2, 9, 3, 4, 2, 2, 5, 0, 2, 0, 2, 7, 1, 6, 2, 2, 1, 9, 4, 3, 3, 3, 8, 4, 5, 4, 4, 0, 2, 1, 8, 4, 1, 1, 0, 1, 0, 5, 5, 0
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Examples

			5.8852772500180288766117618534057698039906986189859...
		

Crossrefs

Cf. A002161 (sqrt(Pi)), A039661 (exp(Pi)).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); Exp(Sqrt(Pi(R))); // G. C. Greubel, Nov 27 2018
    
  • Maple
    evalf[120](exp(sqrt(Pi))); # Muniru A Asiru, Nov 28 2018
  • Mathematica
    RealDigits[Exp[Sqrt[Pi]],10,120][[1]] (* Harvey P. Dale, Aug 22 2012 *)
  • PARI
    default(realprecision, 100); exp(sqrt(Pi)) \\ G. C. Greubel, Jan 12 2017
    
  • Sage
    numerical_approx(exp(sqrt(pi)), digits=100) # G. C. Greubel, Nov 27 2018

A166741 E.g.f.: exp(2*arcsin(x)).

Original entry on oeis.org

1, 2, 4, 10, 32, 130, 640, 3770, 25600, 199810, 1740800, 16983850, 181043200, 2122981250, 26794393600, 367275756250, 5358878720000, 84106148181250, 1393308467200000, 24643101417106250, 457005177241600000
Offset: 0

Views

Author

Jaume Oliver Lafont, Oct 21 2009

Keywords

Comments

exp(2*arcsin(1)) is Aleksandr Gelfond's constant.

Crossrefs

Programs

  • Maple
    seq(simplify(2^(n-1) * (cosh(Pi)*(1-(-1)^n) + sinh(Pi)*(1+(-1)^n)) * GAMMA((1/2)*n-I)*GAMMA((1/2)*n+I) / Pi), n=0..20); # Vaclav Kotesovec, Nov 06 2014
  • Mathematica
    CoefficientList[Series[E^(2*ArcSin[x]), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Aug 04 2014 *)
    FullSimplify[Table[2^(n-1) * (E^(Pi)-(-1)^n*E^(-Pi)) * Gamma[n/2-I] * Gamma[n/2+I] / Pi,{n,0,20}]] (* Vaclav Kotesovec, Nov 06 2014 *)
  • PARI
    for (n=0,25,print(polcoeff(exp(2*asin(x)),n)*n!,","))

Formula

a(n) ~ 2 * n^(n-1) * (exp(Pi) - (-1)^n/exp(Pi)) / exp(n). - Vaclav Kotesovec, Aug 04 2014
From Vaclav Kotesovec, Nov 06 2014: (Start)
a(n) = (n^2 - 4*n + 8)*a(n-2).
a(n) = 2^(n-1) * (exp(Pi)-(-1)^n*exp(-Pi)) * GAMMA(n/2-I) * GAMMA(n/2+I) / Pi.
(End)

A334402 Decimal expansion of cosh(Pi).

Original entry on oeis.org

1, 1, 5, 9, 1, 9, 5, 3, 2, 7, 5, 5, 2, 1, 5, 2, 0, 6, 2, 7, 7, 5, 1, 7, 5, 2, 0, 5, 2, 5, 6, 0, 1, 3, 7, 6, 9, 5, 7, 7, 0, 9, 1, 7, 1, 7, 6, 2, 0, 5, 4, 2, 2, 5, 3, 8, 2, 1, 2, 8, 8, 3, 0, 4, 8, 4, 6, 2, 6, 9, 6, 5, 5, 8, 2, 2, 3, 7, 3, 5, 3, 7, 5, 6, 0, 7, 5, 5, 5, 9, 7, 8, 5, 1, 4, 7, 2, 5, 1, 5, 2, 0, 3, 1, 4, 8, 4, 7, 5, 5
Offset: 2

Views

Author

Ilya Gutkovskiy, Apr 26 2020

Keywords

Comments

This constant is transcendental.

Examples

			(e^Pi + e^(-Pi))/2 = 11.5919532755215206277517520525601...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Cosh[Pi], 10, 110] [[1]]

Formula

Equals Sum_{k>=0} Pi^(2*k)/(2*k)!.
Equals Product_{k>=0} (1 + 4/(2*k+1)^2).
Equals Product_{k>=1} (k^2 + 4)/(k^2 + 1). - Amiram Eldar, Aug 09 2020

A038152 Beatty sequence for e^Pi.

Original entry on oeis.org

23, 46, 69, 92, 115, 138, 161, 185, 208, 231, 254, 277, 300, 323, 347, 370, 393, 416, 439, 462, 485, 509, 532, 555, 578, 601, 624, 647, 671, 694, 717, 740, 763, 786, 809, 833, 856, 879, 902, 925, 948, 971, 995, 1018, 1041, 1064
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = floor(n*e^Pi).

Extensions

Corrected and extended by Carlos Alves, Nov 25 2006

A104691 Decimal expansions of e and Pi interlaced.

Original entry on oeis.org

2, 3, 7, 1, 1, 4, 8, 1, 2, 5, 8, 9, 1, 2, 8, 6, 2, 5, 8, 3, 4, 5, 5, 8, 9, 9, 0, 7, 4, 9, 5, 3, 2, 2, 3, 3, 5, 8, 3, 4, 6, 6, 0, 2, 2, 6, 8, 4, 7, 3, 4, 3, 7, 8, 1, 3, 3, 2, 5, 7, 2, 9, 6, 5, 6, 0, 2, 2, 4, 8, 9, 8, 7, 4, 7, 1, 5, 9, 7, 7, 2, 1, 4, 6, 7, 9, 0, 3, 9, 9, 3, 9, 6, 3, 9, 7, 9, 5, 9, 1, 5, 0, 9, 5, 5
Offset: 1

Views

Author

Zak Seidov, Apr 23 2005

Keywords

Comments

Within 2.5 per cent of e^Pi (A039661: 23.14069...) or 5.5 per cent of Pi^e (A059850: 22.45915...). - Robert G. Wilson v, Jan 04 2013

Crossrefs

Cf. A001355.

Programs

  • Mathematica
    Riffle[RealDigits[E, 10, 53][[1]], RealDigits[Pi, 10, 53][[1]]] (* Robert G. Wilson v, Jan 04 2013 *)

A105007 Primes from merging of 2 successive digits in decimal expansion of exp(Pi).

Original entry on oeis.org

23, 31, 79, 29, 67, 79, 47, 73, 61, 11, 19, 43, 23, 83, 97, 71, 19, 97, 67, 19, 67, 59, 73, 31, 41, 83, 47, 71, 17, 79, 53, 79, 23, 89, 13, 37, 41, 17, 41, 83, 47, 43, 59, 43, 67, 41, 13, 67, 71, 31, 19, 41, 47, 11, 37, 73, 31, 47, 47, 73, 53, 83, 31, 29, 47, 89, 19, 43, 73
Offset: 1

Views

Author

Andrew G. West (WestA(AT)wlu.edu), Mar 31 2005

Keywords

Crossrefs

Cf. A039661.

Programs

  • Mathematica
    Select[FromDigits /@ Partition[RealDigits[Exp[Pi], 10, 500][[1]], 2, 1], # > 9 && PrimeQ[#] &] (* Vincenzo Librandi, Apr 26 2013 *)

Extensions

Changed offset from 0 to 1 by Vincenzo Librandi, Apr 26 2013

A105014 Primes from merging of 9 successive digits in decimal expansion of exp(Pi).

Original entry on oeis.org

269005729, 290863679, 473802661, 527835169, 706754921, 754921967, 801087773, 835844717, 717445879, 796098493, 849365327, 327965863, 991013741, 984449143, 143096677, 136716319, 128763773, 377314703, 833162821, 294047891, 654433627
Offset: 1

Views

Author

Andrew G. West (WestA(AT)wlu.edu), Mar 31 2005

Keywords

Crossrefs

Cf. A039661.

Programs

  • Mathematica
    Select[FromDigits /@ Partition[RealDigits[Exp[Pi], 10, 500][[1]], 9, 1], # > 99999999 && PrimeQ[#]&] (* Vincenzo Librandi, Apr 27 2013 *)

Extensions

Changed offset from 0 to 1 by Vincenzo Librandi, Apr 27 2013

A194554 Decimal expansion of the absolute value of the imaginary part of i^(e^Pi), where i = sqrt(-1).

Original entry on oeis.org

9, 7, 5, 6, 7, 8, 8, 4, 7, 8, 0, 3, 6, 6, 9, 3, 8, 5, 6, 4, 3, 4, 6, 8, 9, 6, 6, 0, 5, 5, 4, 2, 3, 1, 1, 0, 5, 2, 2, 9, 4, 6, 9, 7, 1, 6, 4, 8, 1, 0, 8, 5, 3, 7, 6, 8, 8, 7, 2, 0, 2, 6, 5, 0, 3, 7, 8, 0, 6, 6, 8, 4, 2, 2, 9, 8, 4, 5, 8, 4, 4, 2, 7, 9, 4, 9, 0, 8, 2, 6, 2, 6, 7, 2, 7, 4, 4, 1, 3, 2
Offset: 0

Views

Author

Jonathan Sondow, Aug 28 2011

Keywords

Comments

If Schanuel's Conjecture is true, then i^e^Pi is transcendental (see Marques and Sondow 2010, p. 79).

Examples

			i^e^Pi = 0.2192048949... - 0.9756788478...*i
		

Crossrefs

Cf. A039661 (decimal expansion of e^Pi), A194555 (real part).

Programs

  • Mathematica
    RealDigits[Im[I^E^Pi], 10, 100] // First
  • PARI
    abs(imag(I^(exp(Pi)))) \\ Michel Marcus, Aug 19 2018

A225142 Primes from merging of 10 successive digits in the decimal expansion of exp(Pi).

Original entry on oeis.org

1406926327, 2632779269, 9269005729, 9045278351, 9706754921, 2196759527, 3835844717, 6468440141, 6844014103, 8216511287, 8763773147, 3473538331, 6273655727, 9618858059, 5430487121, 1300849327, 9325853203, 6189528329, 6802254197, 3054479927, 4479927817
Offset: 1

Views

Author

Bruno Berselli, Apr 30 2013

Keywords

Comments

Leading zeros are not permitted, so each prime is 10 digits in length. The terms are listed in the order in which they occur.

Crossrefs

Programs

  • Mathematica
    With[{len = 10}, FromDigits /@ Select[Partition[RealDigits[E^Pi, 10, 600][[1]], len, 1], PrimeQ[FromDigits[#]] && IntegerLength[FromDigits[#]] == len &]]
    Select[FromDigits/@Partition[RealDigits[Exp[Pi],10,600][[1]],10,1],PrimeQ[ #] && IntegerLength[#]==10&] (* Harvey P. Dale, Aug 27 2020 *)
Previous Showing 11-20 of 38 results. Next