A111578
Triangle T(n, m) = T(n-1, m-1) + (4m-3)*T(n-1, m) read by rows 1<=m<=n.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 31, 15, 1, 1, 156, 166, 28, 1, 1, 781, 1650, 530, 45, 1, 1, 3906, 15631, 8540, 1295, 66, 1, 1, 19531, 144585, 126651, 30555, 2681, 91, 1, 1, 97656, 1320796, 1791048, 646086, 86856, 4956, 120, 1, 1, 488281, 11984820, 24604420, 12774510
Offset: 1
The triangle starts in row n=1 as:
1;
1,1;
1,6,1;
1,31,15,1;
1,156,166,28,1;
Connection constants: Row 4: [1, 31, 15, 1] so
x^3 = 1 + 31*(x - 1) + 15*(x - 1)*(x - 5) + (x - 1)*(x - 5)*(x - 9). - _Peter Bala_, Jan 27 2015
-
T[n_, k_] := 1/(4^(k-1)*(k-1)!) * Sum[ (-1)^(k-j-1) * (4*j+1)^(n-1) * Binomial[k-1, j], {j, 0, k-1}]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 28 2015, after Peter Bala *)
-
def A096038(n,m):
if n < 1 or m < 1 or m > n:
return 0
elif n <=2:
return 1
else:
return A096038(n-1,m-1)+(4*m-3)*A096038(n-1,m)
print( [A096038(n,m) for n in range(20) for m in range(1,n+1)] )
# R. J. Mathar, Oct 11 2009
A286724
Triangle read by rows. A generalization of unsigned Lah numbers, called L[2,1].
Original entry on oeis.org
1, 2, 1, 8, 8, 1, 48, 72, 18, 1, 384, 768, 288, 32, 1, 3840, 9600, 4800, 800, 50, 1, 46080, 138240, 86400, 19200, 1800, 72, 1, 645120, 2257920, 1693440, 470400, 58800, 3528, 98, 1, 10321920, 41287680, 36126720, 12042240, 1881600, 150528, 6272, 128, 1, 185794560, 836075520, 836075520, 325140480, 60963840, 6096384, 338688, 10368, 162, 1, 3715891200, 18579456000, 20901888000, 9289728000, 2032128000, 243855360, 16934400, 691200, 16200, 200, 1
Offset: 0
The triangle T(n, m) begins:
n\m 0 1 2 3 4 5 6 7 8 9
0: 1
1: 2 1
2: 8 8 1
3: 48 72 18 1
4: 384 768 288 32 1
5: 3840 9600 4800 800 50 1
6: 46080 138240 86400 19200 1800 72 1
7: 645120 2257920 1693440 470400 58800 3528 98 1
8: 10321920 41287680 36126720 12042240 1881600 150528 6272 128 1
9: 185794560 836075520 836075520 325140480 60963840 6096384 338688 10368 162 1
...
From _Wolfdieter Lang_, Aug 12 2017: (Start)
Recurrence for column elements with m >= 1, and input column m = 0: T(3, 2) = (3/2)*T(2, 1) + 2*3*T(2, 2) = (3/2)*8 + 6 = 18.
Four term recurrence: T(3, 2) = T(2, 1) + 2*5*T(2, 2) - 4*2^2*T(1, 2) = 8 + 10 + 0 = 18.
Meixner type identity, n=2: 2*R(1, x) = (D_x - 2*(D_x)^2)*R(2, x), 2*(2 + x) = (8 + 2*x) - 2*2.
Sheffer recurrence: R(2, x) = (2 + x)*(2 + x) + 4*(1 + x)*1 + 0 = 8 + 8*x + x^2.
Boas-Buck recurrence for column m = 2 and n = 4: T(4, 2) = (2*4!*3/2)*(1*T(3, 2)/3! + 2*T(2, 2)/2!) = 4!*3*(18/3! + 1) = 288. (End)
Diagonal sequence D = 1: o.g.f. 2*1!*(1 + 1*x)/(1- x)^3 generating
{2*(binomial(m+1, m))^2}_{m >= 0} = {2, 8, 18, 32, ...}. - _Wolfdieter Lang_, Sep 14 2017
- Ralph P. Boas, jr. and R. Creighton Buck, Polynomial Expansions of analytic functions, Springer, 1958, pp. 17 - 21, (last sign in eq. (6.11) should be -).
- Earl D. Rainville, Special Functions, The Macmillan Company, New York, 1960, ch. 8, sect. 76, 140 - 146.
- Steven Roman, The Umbral Calculus, Academic press, Orlando, London, 1984, p. 50.
- Peter Bala, The white diamond product of power series
- Wolfdieter Lang, On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli Numbers, arXiv:math/1707.04451 [math.NT], July 2017.
- Wolfdieter Lang, On Generating functions of Diagonal Sequences of Sheffer and Riordan Number Triangles, arXiv:1708.01421 [math.NT], August 2017.
- Emanuele Munarini, Combinatorial identities involving the central coefficients of a Sheffer matrix, Applicable Analysis and Discrete Mathematics (2019) Vol. 13, 495-517.
-
T := (n, k) -> ifelse(n < k, 0, ifelse(k = 0, n!*2^n, (n/k)*T(n-1, k-1) + 2*n*T(n-1, k))): seq(seq(T(n, k), k = 0..n), n = 0..10); # Peter Luschny, Mar 10 2025
-
T[ n_, k_] := Coefficient[ Integrate[ Exp[-x^2 - y x] HermiteH[n, x]^2, {x, -Infinity, Infinity}] / (Sqrt[Pi] Exp[y^2 / 4]), y, 2 k]; (* Michael Somos, Sep 27 2017 *)
-
# Using the function A021009_triangle, displays as a matrix. Following the observation of Ali Pourzand.
print(A021009_triangle(9)^2) # Peter Luschny, Mar 10 2025
A186695
A Galton triangle: T(n,k) = (2k-1)*(T(n-1,k) + T(n-1,k-1)): a type B analog of the ordered Bell numbers A019538.
Original entry on oeis.org
1, 1, 3, 1, 12, 15, 1, 39, 135, 105, 1, 120, 870, 1680, 945, 1, 363, 4950, 17850, 23625, 10395, 1, 1092, 26565, 159600, 373275, 374220, 135135, 1, 3279, 138285, 1303155, 4795875, 8222445, 6621615, 2027025
Offset: 1
Triangle begins
n\k.|..1.....2.....3......4......5......6
=========================================
..1.|..1
..2.|..1.....3
..3.|..1....12....15
..4.|..1....39...135....105
..5.|..1...120...870...1680....945
..6.|..1...363..4950..17850..23625..10395
..
Examples of recurrence relation
T(4,3) = 5*(T(3,3)+T(3,2)) = 5*(15+12) = 135;
T(6,4) = 7*(T(5,4)+T(5,3)) = 7*(1680+870) = 17850.
- Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See p. 8.
- Erich Neuwirth, Recursively defined combinatorial functions: Extending Galton's board, Tech Report TR 99-05, 1999.
- Erich Neuwirth, Recursively defined combinatorial functions: Extending Galton's board, Discrete Math. 239 No. 1-3, 33-51 (2001).
-
A186695 := proc(n, k) option remember; if k < 1 or k > n then 0; elif k = 1 then 1; else (2*k-1)*(procname(n-1, k) + procname(n-1, k-1)) ; end if; end proc: seq(seq(A186695(n,k),k = 1..n),n = 1..10);
-
T[n_, k_] := (2k-1)! Sum[(-1)^(k-j-1) (2j+1)^(n-1) Binomial[k-1, j], {j, 0, k-1}] / (2^(k-1) (k-1)!)^2;
Table[T[n, k], {n, 1, 8}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 02 2019 *)
A111669
Triangle read by rows, based on a simple Fibonacci recursion rule.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 11, 7, 1, 1, 5, 26, 32, 12, 1, 1, 6, 57, 122, 92, 20, 1, 1, 7, 120, 423, 582, 252, 33, 1, 1, 8, 247, 1389, 3333, 2598, 681, 54, 1, 1, 9, 502, 4414, 18054, 24117, 11451, 1815, 88, 1, 1, 10, 1013, 13744, 94684, 210990, 172980, 49566, 4807, 143, 1
Offset: 0
Triangle begins
1....1....2....3....5....8...13....F(k+1)
1
1....1
1....2....1
1....3....4....1
1....4...11....7....1
1....5...26...32...12....1
1....6...57..122...92...20....1
For example, T(6,3) = 122 = 26 + 3*32 = T(5,2) + F(4)*T(5,3).
-
(* To generate the triangle *)
Grid[RecurrenceTable[{F[n,k] == F[n-1,k-1] + Fibonacci[k+1] F[n-1,k], F[0,k] == KroneckerDelta[k]}, F, {n,0,10}, {k,0,10}]] (* Emanuele Munarini, Dec 05 2017 *)
-
T(n, k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, T(n-1, k-1) + fibonacci(k+1)*T(n-1, k))); \\ Michel Marcus, May 25 2024
A182825
E.g.f. 1/(cos(sqrt(3)*x) - sin(sqrt(3)*x)/sqrt(3)).
Original entry on oeis.org
1, 1, 5, 21, 153, 1209, 12285, 140589, 1871217, 27773361, 460041525, 8363802501, 166064229513, 3570030632169, 82674532955565, 2051044762727709, 54279654050034657, 1526205561241263201, 45438086217150617445, 1427921718081647393781, 47235337785416646609273
Offset: 0
-
nn = 20; Table[n!, {n, 0, nn}] CoefficientList[Series[1/(Cos[Sqrt[3]*x] - Sin[Sqrt[3]*x]/Sqrt[3]), {x, 0, nn}], x] (* T. D. Noe, Jun 28 2011 *)
A021424
Expansion of 1/((1-x)(1-3x)(1-5x)(1-7x)).
Original entry on oeis.org
1, 16, 170, 1520, 12411, 96096, 719860, 5278240, 38153621, 273134576, 1942326750, 13748476560, 97001079631, 682818667456, 4798793396840, 33686888924480, 236284962774441, 1656378634646736, 11606570499786130
Offset: 0
a(2) = h^{(4)}_2 = (1^2 + 3^2 + 5^2 + 7^2) + (1^1*(3^1 + 5^1 + 7^1) + 3^1*(5^1 + 7^1) + 5^1*7^1) = 84 + 86 = 120. - _Wolfdieter Lang_, May 26 2017
-
m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)*(1-3*x)*(1-5*x)*(1-7*x)))); // Vincenzo Librandi, Jul 09 2013
-
I:=[1, 16, 170, 1520]; [n le 4 select I[n] else 16*Self(n-1)-86*Self(n-2)+176*Self(n-3)-105*Self(n-4): n in [1..25]]; // Vincenzo Librandi, Jul 09 2013
-
Table[(7^n - 3*5^n + 3^(n + 1) - 1)/48, {n, 3, 60}]
CoefficientList[Series[1 / ((1 - x) (1 - 3 x) (1 - 5 x) (1 - 7 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Jul 09 2013 *)
LinearRecurrence[{16,-86,176,-105},{1,16,170,1520},30] (* Harvey P. Dale, May 26 2014 *)
-
x='x+O('x^99); Vec(1/((1-x)*(1-3*x)*(1-5*x)*(1-7*x))) \\ Altug Alkan, Oct 11 2017
A039756
Triangle of B-analogs of Stirling numbers of 2nd kind.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 9, 13, 1, 1, 16, 58, 40, 1, 1, 25, 170, 330, 121, 1, 1, 36, 395, 1520, 1771, 364, 1, 1, 49, 791, 5075, 12411, 9219, 1093, 1, 1, 64, 1428, 13776, 58086, 96096, 47188, 3280, 1, 1, 81, 2388, 32340, 209622, 618870, 719860, 239220, 9841, 1
Offset: 0
Ruedi Suter (suter(AT)math.ethz.ch)
1;
1, 1;
1, 4, 1;
1, 9, 13, 1;
1, 16, 58, 40, 1;
1, 25, 170, 330, 121, 1;
1, 36, 395, 1520, 1771, 364, 1;
1, 49, 791, 5075, 12411, 9219, 1093, 1;
- Alois P. Heinz, Rows n = 0..100, flattened
- Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See p. 8.
- Ruedi Suter, Two analogues of a classical sequence, J. Integer Sequences, Vol. 3 (2000), #P00.1.8.
-
T(n,k)=if(k<0||k>n,0,n!*polcoeff(polcoeff(exp(x*y+(exp(2*x*y+x*O(x^n))-1)/(2*y)),n),k))
A111579
Triangle A(r,c) read by rows, which contains the row sums of the triangle T(n,k)= T(n-1,k-1)+((c-1)*k+1)*T(n-1,k) in column c.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 4, 2, 1, 1, 8, 5, 2, 1, 1, 16, 15, 6, 2, 1, 1, 32, 52, 24, 7, 2, 1, 1, 64, 203, 116, 35, 8, 2, 1, 1, 128, 877, 648, 214, 48, 9, 2, 1, 1, 256, 4140, 4088, 1523, 352, 63, 10, 2, 1, 1, 512, 21147, 28640, 12349, 3008, 536, 80, 11, 2, 1
Offset: 0
-
T := proc(n,k,c) if k < 0 or k > n then 0 ; elif n <= 1 then 1; else procname(n-1,k-1,c)+((c-1)*k+1)*procname(n-1,k,c) ; fi; end:
A111579 := proc(r,c) local n; if c = 0 then 1 ; else n := r-c ; add( T(n,k,c),k=0..n) ; end if; end:
seq(seq(A111579(r,c),c=0..r),r=0..10) ; # R. J. Mathar, Oct 30 2009
-
T[n_, k_, c_] := T[n, k, c] = If[k < 0 || k > n, 0, If[n <= 1, 1, T[n-1, k-1, c] + ((c-1)*k+1)*T[n-1, k, c]]];
A111579[r_, c_] := Module[{n}, If[c == 0, 1, n = r - c; Sum[T[n, k, c], {k, 0, n}]]];
Table[A111579[r, c], {r, 0, 10}, {c, 0, r}] // Flatten (* Jean-François Alcover, Aug 01 2023, after R. J. Mathar *)
A112351
Triangle read by rows, generated from (..., 5, 3, 1).
Original entry on oeis.org
1, 1, 3, 1, 6, 5, 1, 9, 19, 7, 1, 12, 42, 44, 9, 1, 15, 74, 138, 85, 11, 1, 18, 115, 316, 363, 146, 13, 1, 21, 165, 605, 1059, 819, 231, 15, 1, 24, 224, 1032, 2470, 2984, 1652, 344, 17, 1, 27, 292, 1624, 4974, 8378, 7380, 3060
Offset: 0
The antidiagonal 1 9 19 7 of the array becomes row 3 of the triangle.
From _Clark Kimberling_, Mar 09 2012: (Start)
When jointly generated with A209414, the format as a triangle has the following first five rows:
1;
1, 3;
1, 6, 5;
1, 9, 19, 7;
1, 12, 42, 44, 9;
1, 15, 74, 138, 85, 11;
The corresponding first five polynomials are
1,
1 + 3x,
1 + 6x + 5x^2,
1 + 9x + 19x^2 + 7x^3,
1 + 12x + 42x^2 + 44x^3 + 9x^4. (End)
(1, 0, 0, 0, 0, ...) DELTA (0, 3, -4/3, 1/3, 0, 0, 0, ...) begins:
1;
1, 0;
1, 3, 0;
1, 6, 5, 0;
1, 9, 19, 7, 0;
1, 12, 42, 44, 9, 0;
1, 15, 74, 138, 85, 11, 0;
1, 18, 115, 316, 363, 146, 13, 0;
- _Philippe Deléham_, Mar 12 2012
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
v[n_, x_] := 2 x*u[n - 1, x] + (x + 1)*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A209414 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A112351 *)
(* Clark Kimberling, Mar 09 2012 *)
A348085
a(n) = [x^n] Product_{k=1..2*n} 1/(1 - (2*k-1) * x).
Original entry on oeis.org
1, 4, 170, 13776, 1652442, 262842580, 52116296024, 12380577235040, 3427841258566890, 1083931844930932140, 385417972804020879450, 152219732613102667656000, 66113646914860527721527960, 31319437721634527178263452656
Offset: 0
-
a(n) = polcoef(1/prod(k=1, 2*n, 1-(2*k-1)*x+x*O(x^n)), n);
-
a(n) = if(n==0, 1, -sum(k=0, 2*n-1, (-1)^k*(2*k+1)^(3*n-1)*binomial(2*n-1, k))/(2^(2*n-1)*(2*n-1)!));
Comments