cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A075430 Primes with a squarefree neighbor.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 23, 29, 31, 37, 41, 43, 47, 59, 61, 67, 71, 73, 79, 83, 101, 103, 107, 109, 113, 131, 137, 139, 157, 167, 173, 179, 181, 191, 193, 211, 223, 227, 229, 239, 257, 263, 277, 281, 283, 311, 313, 317, 331, 347, 353, 359, 367, 373, 383, 389, 397
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 15 2002

Keywords

Examples

			a(3) = 5 because 6 (the number above) is squarefree.
a(13) = 47 because 46 (the number below) is squarefree.
53 is not in the sequence because both 52 and 54 have squares among their divisors.
		

Crossrefs

Union of A039787 and A049097.
Complement of A075432 in A000040.
Cf. A005117.

Programs

  • Mathematica
    Select[Prime[Range[100]], Or @@ SquareFreeQ /@ (# + {-1, 1}) &] (* Amiram Eldar, May 07 2025 *)
  • PARI
    isok(p) = isprime(p) && (issquarefree(p-1) || issquarefree(p+1)); \\ Michel Marcus, Feb 20 2023
  • Sage
    def is_A075430(n): return is_prime(n) and (is_squarefree(n-1) or is_squarefree(n+1)) # D. S. McNeil, Jan 16 2011
    

A049198 Numbers that are not squarefree and whose Euler totient function is squarefree.

Original entry on oeis.org

4, 9, 18, 49, 98, 121, 242, 529, 961, 1058, 1849, 1922, 2209, 3481, 3698, 4418, 4489, 5041, 6241, 6889, 6962, 8978, 10082, 10609, 11449, 12482, 13778, 17161, 19321, 21218, 22898, 27889, 32041, 34322, 36481, 38642, 44521, 49729, 51529, 55778, 57121, 64082, 69169
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that abs(mu(phi(k))) = 1 and abs(mu(k)) = 0.
Contains all the squares p^2 of primes p such that p-1 is squarefree (A039787). - Amiram Eldar, Mar 18 2025

Examples

			a(27) = 13778 = 2*83*83 is divisible by a square, but phi(13778) = 6806 = 2*41*83 is squarefree.
		

Crossrefs

Intersection of A049149 and A013929.

Programs

  • Mathematica
    Select[Range[70000], Abs[ MoebiusMu[ EulerPhi[ # ] ] ] == 1 && Abs[ MoebiusMu[ # ] ] == 0 &]
  • PARI
    isok(k)=!issquarefree(k) && issquarefree(eulerphi(k)) \\ Donovan Johnson, Jun 20 2012

A175625 Numbers k such that gcd(k, 6) = 1, 2^(k-1) == 1 (mod k), and 2^(k-3) == 1 (mod (k-1)/2).

Original entry on oeis.org

7, 11, 23, 31, 47, 59, 83, 107, 167, 179, 227, 263, 347, 359, 383, 467, 479, 503, 563, 587, 683, 719, 839, 863, 887, 983, 1019, 1123, 1187, 1283, 1291, 1307, 1319, 1367, 1439, 1487, 1523, 1619, 1823, 1907, 2027, 2039, 2063, 2099, 2207, 2447, 2459, 2543
Offset: 1

Views

Author

Alzhekeyev Ascar M, Jul 28 2010, Jul 30 2010

Keywords

Comments

All composites in this sequence are 2-pseudoprimes, A001567. That subsequence begins with 536870911, 46912496118443, 192153584101141163, with no other composites below 2^64 (the first two were found by 'venco' from the dxdy.ru forum), and contains the terms of A303448 that are not multiples of 3. Correspondingly, composite terms include those of the form A007583(m) = (2^(2m+1) + 1)/3 for m in A303009. The only known composite member not of this form is a(1018243) = 536870911.
Intended as a pseudoprimality test; note that many primes do not pass the third condition either.
Conjecture: The prime values belong to A039787. - Bill McEachen, Dec 27 2023

Crossrefs

Programs

  • Mathematica
    Select[Array[(6 # + (-1)^# - 3)/2 &, 3000], And[PowerMod[2, (# - 1), #] == 1, PowerMod[2, (# - 3), (# - 1)/2] == 1] &] (* Michael De Vlieger, Dec 27 2023 *)
  • PARI
    isA175625(n) = gcd(n,6)==1 && Mod(2,n)^(n-1)==1 && Mod(2,n\2)^(n-3)==1

Extensions

Partially edited by N. J. A. Sloane, Jul 29 2010
Entry rewritten by Charles R Greathouse IV, Aug 04 2010
Comment and b-file from Charles R Greathouse IV, Sep 06 2010
Edited by Max Alekseyev, May 28 2014, Apr 24 2018

A224718 Primes p such that p^2 + 1 is not squarefree.

Original entry on oeis.org

7, 41, 43, 107, 157, 193, 239, 251, 257, 293, 307, 443, 457, 557, 577, 593, 607, 643, 743, 757, 829, 857, 907, 1093, 1193, 1303, 1307, 1451, 1483, 1493, 1543, 1607, 1657, 1693, 1723, 1789, 1907, 1993, 2143, 2207, 2243, 2267, 2293, 2309, 2357, 2393, 2543
Offset: 1

Views

Author

Zak Seidov, Apr 16 2013

Keywords

Examples

			7^2 + 1 = 50 = 2*5^2, 41^2 + 1 = 1681 = 2*29^2.
		

Crossrefs

Cf. A039787.

Programs

  • Mathematica
    Select[Prime[Range[300]], ! SquareFreeQ[#^2 + 1] &]

A089188 Lesser member p of a pair of twin primes such that p-1 is squarefree.

Original entry on oeis.org

3, 11, 59, 71, 107, 179, 191, 227, 239, 311, 347, 419, 431, 599, 659, 827, 1019, 1031, 1091, 1319, 1427, 1487, 1607, 1619, 1787, 1871, 1931, 2027, 2087, 2111, 2267, 2339, 2591, 2687, 2711, 2999, 3119, 3167, 3299, 3359, 3371, 3467, 3527, 3539, 3671, 3767
Offset: 1

Views

Author

Cino Hilliard, Dec 07 2003

Keywords

Examples

			71 is a term because it is a prime, 71 + 2 = 73 is a prime, and 71 - 1 = 70 = 2 * 5 * 7 is squarefree.
17 is not a term because 17 - 1 = 2^4.
		

Crossrefs

Intersection of A001359 and A039787.
Cf. A005117.

Programs

  • Mathematica
    Select[Transpose[Select[Partition[Prime[Range[600]],2,1],#[[2]]-#[[1]]==2&]][[1]],SquareFreeQ[#-1]&] (* Harvey P. Dale, Aug 10 2013 *)
  • PARI
    pm1th(n) = { c=0; pc=0; forprime(x=2,n, pc++; y=x-1; if(isprime(x+2), if(issquarefree(y), c++; print1(x","); ) ) ); print(); print(c","pc","c/pc+.0) }

Extensions

Offset corrected by Amiram Eldar, Jun 29 2024

A153215 Primes p such that none of p-2, p-1, p+1, and p+2 is squarefree.

Original entry on oeis.org

727, 1423, 1861, 3719, 6173, 9749, 11321, 13183, 19073, 20873, 23227, 23473, 23827, 26981, 27883, 34351, 35323, 41263, 42677, 44449, 45127, 45523, 47527, 48751, 49727, 52391, 53623, 53849, 68749, 71993, 72559, 78823, 83609, 89227, 92779
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    << NumberTheory`NumberTheoryFunctions` lst={}; Do[p=Prime[n];If[ !SquareFreeQ[p-1]&&!SquareFreeQ[p+1]&&!SquareFreeQ[p-2]&&!SquareFreeQ[p+2],AppendTo[lst,p]],{n,4*7!}]; lst

A318959 Primes p (> 2) such that p - 2 and p - 1 are nonsquarefree.

Original entry on oeis.org

29, 101, 127, 137, 149, 173, 277, 281, 317, 353, 389, 461, 509, 541, 569, 577, 641, 677, 727, 821, 857, 877, 929, 977, 1109, 1129, 1181, 1217, 1277, 1289, 1361, 1423, 1433, 1451, 1613, 1667, 1721, 1777, 1861, 1877, 1901, 1913, 1973, 2081, 2153, 2297, 2333, 2351
Offset: 1

Views

Author

Seiichi Manyama, Sep 06 2018

Keywords

Examples

			21 (= 23 - 2) is squarefree. So 23 is not a term.
27 = 3^3 and 28 = 2^2*7. So 29 is a term.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesInInterval(3, 2500)| not IsSquarefree(p-2) and not IsSquarefree(p-1)]; // Vincenzo Librandi, Sep 06 2018
  • Mathematica
    Select[Prime[Range[500]], !SquareFreeQ[# - 2] && !SquareFreeQ[# - 1] &] (* Vincenzo Librandi, Sep 06 2018 *)
  • PARI
    forprime(p=2, 1e4, if(!issquarefree(p-1)&&!issquarefree(p-2), print1(p, ", "))); \\ Altug Alkan, Sep 06 2018
    

A319049 Primes p such that none of p - 1, p - 2 and p - 3 are squarefree.

Original entry on oeis.org

101, 127, 353, 727, 1277, 1423, 1451, 1667, 2153, 2351, 2647, 3187, 3251, 3511, 3701, 3719, 3727, 4421, 4951, 5051, 5393, 5527, 6427, 6653, 6959, 7517, 7867, 8527, 9127, 9551, 9803, 9851, 10243, 10253, 10487, 10831, 11273, 11351, 11777, 11827, 12007, 12251, 12277
Offset: 1

Views

Author

Seiichi Manyama, Sep 08 2018

Keywords

Comments

If p is a term, so that there are primes q,r,s such that q^2|p-3, r^2|p-2 and s^2|p-1, then the sequence includes all primes == p (mod q^2*r^2*s^2). In particular, the sequence is infinite, and a(n)/(n*log(n)) is bounded above and below by constants. - Robert Israel, Sep 09 2018

Examples

			98 = 2*7^2, 99 = 3^2*11 and 100 = 2^2*5^2. So 101 is a term.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(13000) | not IsSquarefree(p-1) and not IsSquarefree(p-2) and not IsSquarefree(p-3)]; // Vincenzo Librandi, Sep 17 2018
  • Maple
    Res:= NULL: count:= 0:
    p:= 1;
    while count < 100 do
      p:= nextprime(p);
      if not ormap(numtheory:-issqrfree, [p-1,p-2,p-3]) then
        count:= count+1; Res:= Res, p
      fi
    od:
    Res; # Robert Israel, Sep 09 2018
  • Mathematica
    Select[Prime[Range[2000]], !SquareFreeQ[# - 1] && !SquareFreeQ[# - 2] && !SquareFreeQ[# - 3]&] (* Jean-François Alcover, Sep 17 2018 *)
    Select[Prime[Range[1500]],NoneTrue[#-{1,2,3},SquareFreeQ]&] (* Harvey P. Dale, Apr 11 2022 *)
  • PARI
    isok(p) = isprime(p) && !issquarefree(p-1) && !issquarefree(p-2) && !issquarefree(p-3); \\ Michel Marcus, Sep 09 2018
    

A123269 Sum[ i^j^k, {i,1,n}, {j,1,n}, {k,1,n} ].

Original entry on oeis.org

1, 28, 7625731729896, 13407807929942597099574024998205985135931742965325158317510351105024878248924471298029103219186757034747676158536830429928105045387310278568778808509188348
Offset: 1

Views

Author

Alexander Adamchuk, Oct 09 2006

Keywords

Comments

The next term is too large to include.
Prime p divides a(p) for p = {2, 3, 7, 11, 23, 31, 43, 47, 59, 67, 71, 79, ...} = A039787[n] Primes p such that p-1 is squarefree. p^2 divides a(p) for prime p = {2,3}.

Crossrefs

Cf. A039787. Cf. A086787 - Sum[ i^j, {i, 1, n}, {j, 1, n} ].
Numbers n that divide a(n) are listed in A124391(n) = {1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 16, 18, 20, 21, 22, 23, 24, 27, 28, 31, ...}.

Programs

  • Mathematica
    Table[Sum[i^j^k,{i,1,n},{j,1,n},{k,1,n}],{n,1,5}]
  • PARI
    a(n)=sum(i=1,n,sum(j=1,n,sum(k=1,n,i^j^k))) \\ Charles R Greathouse IV, May 15 2013

Formula

a(n) = Sum[ i^j^k, {i,1,n}, {j,1,n}, {k,1,n} ].

A124391 Numbers m that divide A123269(m) = Sum_{i=1..m, j=1..m, k=1..m} i^j^k.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 16, 18, 20, 21, 22, 23, 24, 27, 28, 31, 32, 33, 36, 40, 42, 43, 44, 46, 47, 48, 49, 54, 56, 59, 60, 62, 63, 64, 66, 67, 69, 71, 72, 77, 79, 80, 81, 83, 84, 86, 88, 92, 93, 94, 96, 98, 99, 100, 103
Offset: 1

Views

Author

Alexander Adamchuk, Oct 30 2006

Keywords

Comments

A123269(m) = Sum_{i=1..m, j=1..m, k=1..m} i^j^k = {1, 28, 7625731729896, ...}.
Primes terms are listed in A039787.

Crossrefs

Programs

  • Mathematica
    Do[f=Sum[Mod[Sum[Mod[Sum[PowerMod[i,j^k,n], {i, 1, n}],n], {j, 1, n}],n], {k, 1, n}];If[IntegerQ[f/n],Print[n]],{n,1,103}]
Previous Showing 11-20 of 24 results. Next