cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 39 results. Next

A090968 Primes p such that p^2 divides 19^(p-1) - 1.

Original entry on oeis.org

3, 7, 13, 43, 137, 63061489
Offset: 1

Views

Author

Robert G. Wilson v, Feb 27 2004

Keywords

Comments

Primes p such that p divides the Fermat quotient of p (with base 19). The Fermat quotient of p with base a denotes the integer q_p(a) = ( a^(p-1) - 1) / p, where p is a prime which does not divide the integer a. - C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 20 2005
No further terms up to 3.127*10^13.

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 43, p. 17, Ellipses, Paris 2008.
  • Paulo Ribenboim, The Little Book Of Big Primes, Springer-Verlag, NY 1991, page 170.
  • Roozbeh Hazrat, Mathematica: A Problem-Centered Approach, Springer 2010, pp. 39, 171. [Harvey P. Dale, Oct 17 2011]

Crossrefs

Programs

  • Mathematica
    NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; p = 1; Do[ p = NextPrim[p]; If[PowerMod[19, p - 1, p^2] == 1, Print[p]], {n, 1, 2*10^8}]
    Select[Prime[Range[4*10^6]],PowerMod[19,#-1,#^2]==1&] (* Harvey P. Dale, Nov 08 2017 *)

A128669 Primes p such that p^2 divides 23^(p-1) - 1.

Original entry on oeis.org

13, 2481757, 13703077, 15546404183, 2549536629329
Offset: 1

Views

Author

Alexander Adamchuk, Mar 26 2007

Keywords

Comments

No further terms up to 3.127*10^13.

References

  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 233.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[5*10^7]], Mod[ 23^(# - 1) - 1, #^2] == 0 &] (* G. C. Greubel, Jan 18 2018 *)
    Select[Prime[Range[93*10^9]],PowerMod[23,#-1,#^2]==1&] (* Harvey P. Dale, May 15 2018 *)

A111027 Wieferich primes in base 12.

Original entry on oeis.org

2693, 123653
Offset: 1

Views

Author

Walter Kehowski, Oct 05 2005

Keywords

Comments

I have searched up to the 9 millionth prime, 160481183 and gave up trying to find a third term. The sequence is conjectured to be infinite. If the behavior is similar to base 10, A045616, then the next term could be greater than 2*10^11. In base 12 with X for ten and E for eleven the sequence is [1685, 5E685] so it would be interesting to see if the third term ends in 685 as well. These primes are also the Wieferich numbers in base 12: 12^phi(n) = 1 mod n^2.
Richard Fischer has carried this search to 4.8 * 10^13 (as of January 2014). - John Blythe Dobson, Mar 06 2014

Crossrefs

Programs

  • Maple
    WP:=[]: for z from 1 to 1 do for k from 1 to 9000000 do p:=ithprime(k); if 12 &^(p-1) mod p^2 = 1 then WP:=[op(WP),p]; printf("p=%d, ",p); fi; if k mod 10^5 = 0 then printf("k=%d, ",k); fi; od; od; WP;
  • Mathematica
    Select[Prime[Range[1000000]], PowerMod[12, # - 1, #^2] == 1 &] (* Robert Price, May 17 2019 *)

Formula

12^(p-1) == 1 mod p^2

A174422 1st Wieferich prime base prime(n).

Original entry on oeis.org

1093, 11, 2, 5, 71, 2, 2, 3, 13, 2, 7, 2, 2, 5
Offset: 1

Views

Author

Jonathan Sondow, Mar 19 2010

Keywords

Comments

Smallest prime p such that p^2 divides prime(n)^(p-1) - 1.
Smallest prime p such that p divides the Fermat quotient q_p((prime(n)) = (prime(n)^(p-1) - 1)/p.
See additional comments, links, and cross-refs in A039951.
a(15) = A039951(47) > 4.1*10^13.

Examples

			a(1) = 1093 is the first Wieferich prime A001220. a(2) = 11 is the first Mirimanoff prime A014127.
		

Crossrefs

Cf. A001220, A014127, A039951 = smallest prime p such that p^2 divides n^(p-1) - 1, A125636 = smallest prime p such that prime(n)^2 divides p^(prime(n)-1) - 1.
Cf. A178871 = 2nd Wieferich prime base prime(n).

Programs

  • Mathematica
    f[n_] := Block[{b = Prime@ n, p = 2}, While[ PowerMod[b, p - 1, p^2] != 1, p = NextPrime@ p]; p]; Array[f, 14]
  • PARI
    forprime(a=2, 20, forprime(p=2, 10^9, if(Mod(a, p^2)^(p-1)==1, print1(p, ", "); next({2}))); print1("--, ")) \\ Felix Fröhlich, Jun 27 2014

Formula

a(n) = A039951(prime(n)).
a(n) = 2 if and only if prime(n) == 1 (mod 4). [Jonathan Sondow, Aug 29 2010]

A096082 Smallest odd prime p such that p^2 | n^(p-1) - 1.

Original entry on oeis.org

3, 1093, 11, 1093, 20771, 66161, 5, 3, 11, 3, 71, 2693, 863, 29, 29131, 1093, 3, 5, 3, 281
Offset: 1

Views

Author

Lekraj Beedassy, Jul 22 2004

Keywords

Comments

Similar to the sequence A039951 where p=2 is allowed.
a(n^k) <= a(n) for any n,k>1.
a(21) > 1.63*10^14 (see Fischer's link).
For all nonnegative integers n and k, a(n^(n^k)) = a(n). (see puzzle 762 in the links). Also a(n) = 3 if and only if mod(n, 36) is in the set {1, 8, 10, 19, 26, 28, 35}. - Farideh Firoozbakht and Jahangeer Kholdi, Nov 01 2014

Crossrefs

Cf. A007663, A001220, A039951, A124121, 124122.

Programs

  • Mathematica
    f[n_] := Block[{k = 2}, While[k < 5181800 && PowerMod[n, Prime[k] - 1, Prime[k]^2] != 1, k++ ]; If[k == 5181800, 0, Prime[k]]]; Table[ f[n], {n, 70}] (* Robert G. Wilson v, Jul 23 2004 *)
  • PARI
    for(n=2, 20, forprime(p=3, 1e9, if(Mod(n, p^2)^(p-1)==1, print1(p, ", "); next({2}))); print1("--, ")) \\ Felix Fröhlich, Jul 24 2014

Formula

a(n) = A039951(n) for all n not of the form 4k+1, while a(4k+1) > A039951(4k+1) = 2. - Alexander Adamchuk, Dec 03 2006

Extensions

Definition corrected by Alexander Adamchuk, Nov 27 2006
Edited by Max Alekseyev, Oct 07 2009
Edited and updated by Max Alekseyev, Jan 29 2012

A242982 Primes p such that p^2 divides 20^(p-1) - 1.

Original entry on oeis.org

281, 46457, 9377747, 122959073
Offset: 1

Views

Author

Felix Fröhlich, May 28 2014

Keywords

Comments

Base 20 Wieferich primes. According to Richard Fischer, there is no other term up to approximately 5*10^13.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1000000]], PowerMod[20, # - 1, #^2] == 1 &] (* Robert Price, May 17 2019 *)
  • PARI
    forprime(n=2, 10^9, if(Mod(20, n^2)^(n-1)==1, print1(n, ", ")));

A244260 Primes p such that p^2 divides 18^(p-1) - 1.

Original entry on oeis.org

5, 7, 37, 331, 33923, 1284043
Offset: 1

Views

Author

Felix Fröhlich, Jun 24 2014

Keywords

Comments

Base 18 Wieferich primes. According to Richard Fischer there is no other term up to approximately 5*10^13.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[1000000]], PowerMod[18, # - 1, #^2] == 1 &] (* Robert Price, May 17 2019 *)
  • PARI
    forprime(n=2, 10^9, if(Mod(18, n^2)^(n-1)==1, print1(n, ", ")));

A178871 2nd Wieferich prime base prime(n).

Original entry on oeis.org

3511, 1006003, 20771, 491531
Offset: 1

Views

Author

Jonathan Sondow, Jun 20 2010, Jun 24 2010

Keywords

Comments

2nd prime p such that p^2 divides prime(n)^(p-1) - 1.
2nd prime p such that p divides the Fermat quotient q_p(p_n) = ((p_n)^(p-1) - 1)/p, where p_n = prime(n).
a(5) is unknown: 71 is the only known prime p that divides q_p(11).
If a(5) is found, the sequence continues a(6) = 863, a(7) = 3, a(8) = 7, a(9) = 2481757.
See additional comments, references, links, and cross-refs in A039951 and A174422.

Examples

			a(1) = 3511 is the 2nd Wieferich prime A001220(2).
a(2) = 1006003 is the 2nd Mirimanoff prime A014127(2).
		

Crossrefs

Cf. A039951 = smallest prime p such that p^2 divides n^(p-1) - 1, A174422 = first Wieferich prime base prime(n).

Programs

  • PARI
    {default(primelimit, 10^7); for(n=1, 9, a=prime(n); c=0; forprime(p=2, 10^7, if(Mod(a, p^2)^(p-1)==1, c++; if(c==2, print1(p, ", "); next(2)))); print1(">10^7, "))} \\ Jens Kruse Andersen, Jun 18 2014

A090096 Least n-pseudoprime which is a power of a prime number; smallest prime-power pseudoprime to base n.

Original entry on oeis.org

4, 1194649, 121, 1194649, 4, 4377277921, 25, 9, 4, 9, 5041, 7252249, 4, 841, 848615161, 1194649, 4, 25, 9, 78961, 4, 169, 169, 25, 4, 9, 121, 9, 4, 49, 49, 25, 4, 2129445719544546771481, 9, 4377277921, 4, 289, 64625521, 121, 4, 529, 25, 9, 4, 9
Offset: 1

Views

Author

Labos Elemer, Dec 01 2003

Keywords

Examples

			n=2: -1+2^(1092*1094) = K*1093*1093 = K*1194649;
n=4k+1: a(4k+1)=4; for a(k)=9 see A090097; a(k)=25 see A090098.
Some large values after a(46): a(52)=219521; a(56)=418609; a(58)=17161; a(59)=7711729; a(83)=23726641; a(84)=26569; a(86)=4656561121; a(87)=3996001; a(92)=528529; a(95)=4566769; a(96)=11881.
Hard bases below 100 are 47, 66, 72, 88, 90.
		

Crossrefs

Programs

  • Mathematica
    t=list-of-true-p-powers-generated-independently lf[x_] := Length[FactorInteger[x]] base=6;Do[s=Mod[ -1+base^(Part[t, n]-1), Part[t, n]]; If[Equal[s, 0], Print[Part[t, n]]], {n, 1, Length[t]}]

Formula

a(n) = A039951(n)^2.

Extensions

More terms from Michel Marcus, Aug 30 2019

A247072 Smallest Wieferich prime (> sqrt(n)) in base n.

Original entry on oeis.org

2, 1093, 11, 1093, 20771, 66161, 5, 3, 11, 487, 71, 2693, 863, 29, 29131, 1093, 46021, 5, 7, 281
Offset: 1

Views

Author

Eric Chen, Nov 16 2014

Keywords

Comments

a(n) = Smallest prime such that n appears in A143548. - Eric Chen, Nov 26 2014
The square of a(n) is the smallest squared prime that is a pseudoprime (> n) in base n; for example, a(2) = 1093, and 1093^2 = 1194649 is the smallest squared prime that is pseudoprime in base 2. - Eric Chen, Nov 26 2014
Is a(n) defined for all n? - Eric Chen, Nov 26 2014
Does every prime appear in this sequence? - Eric Chen, Nov 26 2014
a(22)..a(28) = {13, 13, 5, 20771, 71, 11, 19}, a(30)..a(46) = {7, 7, 1093, 233, 46145917691, 1613, 66161, 77867, 17, 8039, 11, 29, 23, 103, 229, 1283, 829}, a(48)..a(49) = {7, 491531}, a(51)..a(60) = {41, 461, 47, 19, 30109, 647, 47699, 131, 2777, 29}, a(62)..a(71) = {19, 23, 1093, 17, 89351671, 47, 19, 19, 13, 47}, a(74)..a(81) = {1251922253819, 17, 37, 32687, 43, 263, 13, 11}, a(83)..a(100) = {4871, 163, 11779, 68239, 1999, 2535619637, 13, 6590291053, 293, 727, 509, 11, 2137, 109, 2914393, 28627, 13, 487}; a(n) is currently unknown for n = {21, 29, 47, 50, 61, 72, 73, 82, 126, 132, 154, 186, 187, 188, 200, 203, 222, 231, 237, 301, 304, 309, 311, 327, 335, 347, 351, 355, 357, 435, 441, 454, 458, 496, 541, 542, 546, 554, 570, 593, 609, 610, 639, 640, 654, 662, 668, 674, 692, 697, 698, 701, 718, 724, 725, 727, 733, 743, 760, 772, 775, 777, 784, 798, 807, 808, 812, 829, 841, 858, 860, 871, 883, 912, 919, 944, 980, 983, 986, ...}. - Eric Chen, Nov 26 2014
a(21) > 3.4 * 10^13. - Eric Chen, Nov 26 2014

Examples

			a(12) = 2693 because the Wieferich primes to base 12 are 2693, 123653, ..., and 2693 is greater than sqrt(12), so a(12) = 2693.
a(17) = 46021 because the Wieferich primes to base 17 are 2, 3, 46021, 48947, 478225523351, ..., but neither 2 nor 3 is greater than sqrt(17), so a(17) = 46021.
		

Crossrefs

Programs

  • Mathematica
    a247072[n_] := Block[{p = Int[Sqrt[n]]+1}, While[!PrimeQ[p] || [p < 10^8 && PowerMod[n, p - 1, p^2] != 1], p++]; If[p == 10^8, 0, p]]; Table[ a247072[n], {n, 100}] (* Eric Chen, Nov 27 2014 *)
  • PARI
    a(n)=forprime(p=sqrtint(n)+1,,if(Mod(n^(p-1),p^2)==1,return(p)))
    n=1; while(n<101, print1(a(n), ", "); n++) \\ Charles R Greathouse IV, Nov 16 2014
Previous Showing 11-20 of 39 results. Next